Awesome
AnchorFormer
This repository includes the pure code of AnchorFormer model in the paper.
UPDATE
- 2023-07-28: update a pretrained model on PCN.
- 2023-06-15: update model files to support arbitrary output points.
Environment
These model are implemented in PyTorch (1.8.1+cu102) version.
The version of operation system in docker is Ubuntu 18.04.6 LTS.
The python version is 3.8.13.
The GPU is NVIDIA Tesla V100 (16GB) and the CUDA version is CUDA 10.2.
Install
- Requirements
pip install -r requirements.txt
- c++ extensions
bash ./extensions/install.sh
- Standard PointNet++ lib (ref to "https://github.com/erikwijmans/Pointnet2_PyTorch")
Usage
train
pretrained PCN model PCN results
CUDA_VISIBLE_DEVICES=${GPUS} python -m torch.distributed.launch --master_port=${PORT} --nproc_per_node=${NGPUS} main.py --launcher pytorch --sync_bn ${PY_ARGS}
example:
- train from start
CUDA_VISIBLE_DEVICES=0,1,2,3 WORLD_SIZE=4 python -m torch.distributed.launch --node_rank=0 --nnodes=1 --master_port=13232 --nproc_per_node=4 main.py --launcher pytorch --sync_bn --config ./cfgs/PCN_models/AnchorFormer.yaml --exp_name try_to_train_anchorformer (--val_freq 10 --val_interval 50)
- resume from last break-point
CUDA_VISIBLE_DEVICES=0,1,2,3 WORLD_SIZE=4 python -m torch.distributed.launch --node_rank=0 --nnodes=1 --master_port=13232 --nproc_per_node=4 main.py --launcher pytorch --sync_bn --config ./cfgs/PCN_models/AnchorFormer.yaml --exp_name try_to_train_anchorformer --resume
- resume from specified break-point
CUDA_VISIBLE_DEVICES=0,1,2,3 WORLD_SIZE=4 python -m torch.distributed.launch --node_rank=0 --nnodes=1 --master_port=13232 --nproc_per_node=4 main.py --launcher pytorch --sync_bn --config ./cfgs/PCN_models/AnchorFormer.yaml --exp_name try_to_train_anchorformer --start_ckpts {CKPT_PATH}.pth
test
CUDA_VISIBLE_DEVICES=${GPUS} python main.py --test ${PY_ARGS}
example:
CUDA_VISIBLE_DEVICES=0 python main --ckpts {CKPT_PATH}.pth --config ./cfgs/PCN_models/AnchorFormer.yaml --exp_name test_ckpt