Awesome
SDF-SRN: Learning Signed Distance 3D Object Reconstruction from Static Images
Chen-Hsuan Lin,
Chaoyang Wang,
and Simon Lucey
Advances in Neural Information Processing Systems (NeurIPS), 2020
Project page: https://chenhsuanlin.bitbucket.io/signed-distance-SRN
Paper: https://chenhsuanlin.bitbucket.io/signed-distance-SRN/paper.pdf
arXiv preprint: https://arxiv.org/abs/2010.10505
We provide PyTorch code for both the ShapeNet and PASCAL3D+ experiments.
Prerequisites
This code is developed with Python3 (python3
). PyTorch 1.4+ is required.
It is recommended to install the dependencies with conda
by running
conda env create --file requirements.yaml python=3
This creates a conda environment named sdfsrn-env
. Activate it with
conda activate sdfsrn-env
You may want to install with virtualenv
; however, this repository depends on VIGRA to compute the distance transforms, which does not seem to be pip installable.
Some workarounds would include (a) installing VIGRA from source, or (b) replacing the VIGRA distance transform function with scipy.ndimage.distance_transform_edt
(significantly slower).
Dataset
-
ShapeNet
Download the ShapeNet renderings of Kato et al. from the DVR repository (33GB):
(this file is huge and takes a long time to fully unzip, so we extract only the 3 categories of interest in this work)
In thewget https://s3.eu-central-1.amazonaws.com/avg-projects/differentiable_volumetric_rendering/data/NMR_Dataset.zip unzip NMR_Dataset.zip NMR_Dataset/02691156/* # airplane unzip NMR_Dataset.zip NMR_Dataset/02958343/* # car unzip NMR_Dataset.zip NMR_Dataset/03001627/* # chair rm NMR_Dataset.zip
data/NMR_Dataset
directory, download the post-processed surface point clouds:
There should be awget https://cmu.box.com/shared/static/yvencf3ts8itfgyuh5sap9q7dy5r1elg.gz tar -zxvf yvencf3ts8itfgyuh5sap9q7dy5r1elg.gz rm yvencf3ts8itfgyuh5sap9q7dy5r1elg.gz
pointcloud3.npz
within each shape directory, along with the originalpointcloud.npz
. You can check with
If you're interested in creating ground-truth point clouds for other object categories, please refer to the README inls NMR_Dataset/02691156/10155655850468db78d106ce0a280f87
data
. -
PASCAL3D+
Download the PASCAL3D+ (v1.1) dataset under thedata
directory (7.7GB):
Also under thewget ftp://cs.stanford.edu/cs/cvgl/PASCAL3D+_release1.1.zip unzip PASCAL3D+_release1.1.zip rm PASCAL3D+_release1.1.zip
data
directory, download the object masks and ground-truth point clouds for the 3 categories (23MB):wget https://cmu.box.com/shared/static/uyz0txthw0ufjwury0f3z3iuhqdbaet9.gz tar -zxvf uyz0txthw0ufjwury0f3z3iuhqdbaet9.gz rm uyz0txthw0ufjwury0f3z3iuhqdbaet9.gz
Pretrained models
First, create a directory to store the pretrained models:
mkdir -p pretrained
Then under pretrained
, download the pretrained model(s) by running the commands
# ShapeNet (trained on multi-view renderings, 615MB each)
wget https://cmu.box.com/shared/static/cgrzlaudm2ojs5l3nmmbbr7ovsvbqhtv.ckpt -O shapenet_airplane.ckpt # airplane
wget https://cmu.box.com/shared/static/lclrhwae5xu6z7f2fc3qnkeon3q5ljfg.ckpt -O shapenet_car.ckpt # car
wget https://cmu.box.com/shared/static/58dsppp8hq0yqj216tqm573or9porq2m.ckpt -O shapenet_chair.ckpt # chair
# PASCAL3D+ (197MB each)
wget https://cmu.box.com/shared/static/gvslqtye7p0pzgaspmwvq7pggnmxsu3x.ckpt -O pascal3d_airplane.ckpt # airplane
wget https://cmu.box.com/shared/static/kh8mrrufol3u1mm6duaym5sygfd42d5p.ckpt -O pascal3d_car.ckpt # car
wget https://cmu.box.com/shared/static/ty0ywyeud1n1n9uu169xoag9m35me267.ckpt -O pascal3d_chair.ckpt # chair
Compiling the CUDA libraries
The Chamfer distance function can be compiled by running python3 setup.py install
under external/chamfer3D
.
The source code is taken/modified from the AtlasNet repository.
When compiling CUDA code, you may need to modify CUDA_PATH
accordingly.
Running the code
-
Evaluating the downloaded pretrained models
# ShapeNet (trained on multi-view renderings) python3 evaluate.py --model=sdf_srn --yaml=options/shapenet/sdf_srn.yaml --name=airplane_pretrained --data.shapenet.cat=plane --load=pretrained/shapenet_airplane.ckpt --tb= --visdom= --eval.vox_res=128 python3 evaluate.py --model=sdf_srn --yaml=options/shapenet/sdf_srn.yaml --name=car_pretrained --data.shapenet.cat=car --load=pretrained/shapenet_car.ckpt --tb= --visdom= --eval.vox_res=128 python3 evaluate.py --model=sdf_srn --yaml=options/shapenet/sdf_srn.yaml --name=chair_pretrained --data.shapenet.cat=chair --load=pretrained/shapenet_chair.ckpt --tb= --visdom= --eval.vox_res=128 # PASCAL3D+ python3 evaluate.py --model=sdf_srn --yaml=options/pascal3d/sdf_srn.yaml --name=airplane_pretrained --data.pascal3d.cat=plane --load=pretrained/pascal3d_airplane.ckpt --tb= --visdom= --eval.vox_res=128 --eval.icp python3 evaluate.py --model=sdf_srn --yaml=options/pascal3d/sdf_srn.yaml --name=car_pretrained --data.pascal3d.cat=car --load=pretrained/pascal3d_car.ckpt --tb= --visdom= --eval.vox_res=128 --eval.icp python3 evaluate.py --model=sdf_srn --yaml=options/pascal3d/sdf_srn.yaml --name=chair_pretrained --data.pascal3d.cat=chair --load=pretrained/pascal3d_chair.ckpt --tb= --visdom= --eval.vox_res=128 --eval.icp
This will create the following files in the output directory (e.g.
output/sdf_srn_pascal3d/car_pretrained
):chamfer.txt
: the (bidirectional) Chamfer distance error for each example.dump/*_mesh.ply
: the resulting 3D meshes (from zero isosurface extraction with marching cubes).dump/*.png
: images including input/rendered RGB images, input/predicted masks, depth maps and surface normal maps.dump/vis.html
: a webpage to visualize all the images for convenience.
The overall Chamfer distance error (the numbers reported in the paper) will also be shown on screen.
Note that it takes longer to evaluate the PASCAL3D+ models since we run ICP to pre-align the predictions to the ground-truth shapes. -
Training from scratch
To train SDF-SRN, we first quickly pretrain the generator with a spherical SDF for 1000 iterations with:
# ShapeNet python3 train.py --model=sdf_srn_pretrain --yaml=options/shapenet/sdf_srn_pretrain.yaml # PASCAL3D+ python3 train.py --model=sdf_srn_pretrain --yaml=options/pascal3d/sdf_srn_pretrain.yaml
This helps SDF-SRN converge to a feasible solution, otherwise it may get stuck in bad local minima.
For the main training:
# ShapeNet (~100K iterations for airplanes and cars, ~200K iterations for chairs) python3 train.py --model=sdf_srn --yaml=options/shapenet/sdf_srn.yaml --name=airplane --data.shapenet.cat=plane --max_epoch=24 --loss_weight.shape_silh=1 python3 train.py --model=sdf_srn --yaml=options/shapenet/sdf_srn.yaml --name=car --data.shapenet.cat=car --max_epoch=27 python3 train.py --model=sdf_srn --yaml=options/shapenet/sdf_srn.yaml --name=chair --data.shapenet.cat=chair --max_epoch=28 # PASCAL3D+ (~30K iterations) python3 train.py --model=sdf_srn --yaml=options/pascal3d/sdf_srn.yaml --name=airplane --data.pascal3d.cat=plane --freq.eval=30 --freq.ckpt=30 --max_epoch=500 python3 train.py --model=sdf_srn --yaml=options/pascal3d/sdf_srn.yaml --name=car --data.pascal3d.cat=car --freq.eval=10 --freq.ckpt=10 --max_epoch=170 python3 train.py --model=sdf_srn --yaml=options/pascal3d/sdf_srn.yaml --name=chair --data.pascal3d.cat=chair --freq.eval=60 --freq.ckpt=60 --max_epoch=900
The above command for ShapeNet runs single-view training on multi-view data. To train on single-view ShapeNet data (only 1 view is available per CAD model) with the reported settings, run
# single-view ShapeNet chairs (~50K iterations) python3 train.py --model=sdf_srn --yaml=options/shapenet/sdf_srn.yaml --name=chair_1view_1kcad --data.shapenet.cat=chair --data.shapenet.train_view=1 --data.train_sub=1000 --data.augment.brightness=0.2 --data.augment.contrast=0.2 --data.augment.saturation=0.2 --data.augment.hue=0.5 --freq.eval=100 --freq.ckpt=100 --max_epoch=800
This trains on a subset of 1000 chair CAD models with 1 viewpoint each while randomly jittering the colors.
To evaluate the trained models:
# ShapeNet python3 evaluate.py --model=sdf_srn --yaml=options/shapenet/sdf_srn.yaml --name=airplane --data.shapenet.cat=plane --tb= --visdom= --eval.vox_res=128 --resume python3 evaluate.py --model=sdf_srn --yaml=options/shapenet/sdf_srn.yaml --name=car --data.shapenet.cat=car --tb= --visdom= --eval.vox_res=128 --resume python3 evaluate.py --model=sdf_srn --yaml=options/shapenet/sdf_srn.yaml --name=chair --data.shapenet.cat=chair --tb= --visdom= --eval.vox_res=128 --resume # PASCAL3D+ python3 evaluate.py --model=sdf_srn --yaml=options/pascal3d/sdf_srn.yaml --name=airplane --data.pascal3d.cat=plane --tb= --visdom= --eval.vox_res=128 --eval.icp --resume python3 evaluate.py --model=sdf_srn --yaml=options/pascal3d/sdf_srn.yaml --name=car --data.pascal3d.cat=car --tb= --visdom= --eval.vox_res=128 --eval.icp --resume python3 evaluate.py --model=sdf_srn --yaml=options/pascal3d/sdf_srn.yaml --name=chair --data.pascal3d.cat=chair --tb= --visdom= --eval.vox_res=128 --eval.icp --resume
The expected output is similar to those described above (in the pretrained models section).
-
Visualizing the results
We have included code to visualize the training over TensorBoard. The TensorBoard events include the following:
- SCALARS: the losses and bidirectional Chamfer distances (for both training and validation sets).
- IMAGES: visualization of the RGB/mask/depth/normal images.
We also provide visualization of dense point clouds sampled on the zero isosurface in Visdom.
-
General usage of the codebase
The simplest command to run training is:
python3 train.py --model=sdf_srn
This will run
model/sdf_srn.py
as the main engine withoptions/sdf_srn.yaml
as the main config file. Note thatsdf_srn
is hierarchically inherited fromimplicit
andbase
, which makes the codebase customizable.
The complete configuration will be printed upon execution. To override specific options, add--<key>=value
or--<key1>.<key2>=value
(and so on) to the command line. The configuration will be loaded as the variableopt
throughout the codebase.
If you want to reproduce the reported results, load preset configurations with theyaml
option (details below).Some tips on using and understanding the codebase:
- The computation graph for forward/backprop is stored in
var
throughout the codebase. - The losses are stored in
loss
. To add a new loss function, just implement it incompute_loss()
and add its weight toopt.loss_weight.<name>
. It will automatically be added to the overall loss and logged to Tensorboard. - If you are using a multi-GPU machine, you can add
--gpu=<gpu_number>
to specify which GPU to use. Multi-GPU training/evaluation is currently not supported. - To resume from a previous checkpoint, add
--resume=<epoch_number>
, or just--resume
to resume from the latest checkpoint. - (to be continued....)
- The computation graph for forward/backprop is stored in
If you find our code useful for your research, please cite
@inproceedings{lin2020sdfsrn,
title={SDF-SRN: Learning Signed Distance 3D Object Reconstruction from Static Images},
author={Lin, Chen-Hsuan and Wang, Chaoyang and Lucey, Simon},
booktitle={Advances in Neural Information Processing Systems ({NeurIPS})},
year={2020}
}
Please contact me (chlin@cmu.edu) if you have any questions!