Awesome
s2tnet
Paper
- This is the official implementation of the paper: S2TNet: Spatio-Temporal Transformer Networks for Trajectory Prediction in Autonomous Driving (ACML 2021).
Quick Start
Requires:
- adamod==0.0.3
- ConfigArgParse==1.5.2
- numpy==1.19.0
- PyYAML==6.0
- scipy==1.7.1
- tensorboardX==2.5.1
- torch==1.9.0
- tqdm==4.31.1
1) Install Packages
pip install -r requirements.txt
2) Dataset
We use Apollo Scape Trajectory dataset
Performance
Results on Apollo Scape:
<table class="tg"> <thead> <tr> <th class="tg-c3ow">WSADE</th> <th class="tg-c3ow">ADEv</th> <th class="tg-c3ow">ADEp</th> <th class="tg-c3ow">ADEb</th> <th class="tg-c3ow">WSFDE</th> <th class="tg-c3ow">FDEv</th> <th class="tg-c3ow">FDEp</th> <th class="tg-c3ow">FDEb</th> </tr> </thead> <tbody> <tr> <td class="tg-c3ow">1.1679</td> <td class="tg-c3ow">1.9874</td> <td class="tg-c3ow">0.6834</td> <td class="tg-c3ow">1.7000</td> <td class="tg-c3ow">2.1798</td> <td class="tg-c3ow">3.5783</td> <td class="tg-c3ow">1.3048</td> <td class="tg-c3ow">3.2151</td> </tr> </tbody> </table>S2TNet
Training & Evaluation
You can train our model by below command:
python3 main.py --config ./config/apolloscape/train.yaml
Testing & Uploading to Leaderboard
You can test our model by below command:
python3 main.py --config ./config/apolloscape/test.yaml
The result file, named as prediction_result.zip, is generated after testing phase. Then, you can directly upload the file to (http://apolloscape.auto/trajectory.html) to obtain the official results.
Citation
If you find our work useful for your research, please consider citing the paper:
@inproceedings{pmlr-v157-chen21a,
title = {S2TNet: Spatio-Temporal Transformer Networks for Trajectory Prediction in Autonomous Driving},
author = {Chen, Weihuang and Wang, Fangfang and Sun, Hongbin},
booktitle = {Proceedings of The 13th Asian Conference on Machine Learning},
pages = {454--469},
year = {2021},
volume = {157},
month = {17--19 Nov}
}