Awesome
VIGAN
This is a PyTorch implementation of the paper "VIGAN: Missing View Imputation with Generative Adversarial Networks". Please cite the paper in your publications if you find the source code useful to your research.
Installation
Install pytorch and torchvision.
VIGAN model
VIGAN is the model for imputing missing views based on generative adversarial networks which combines cross-domain relations given unpaired data with multi-view relations given paired data.
<p align="center"> <img width="300" height="200" src="https://github.com/chaoshangcs/VIGAN/blob/master/imgs/img1.png" width="425"/> <img width="300" height="200" src="https://github.com/chaoshangcs/VIGAN/blob/master/imgs/img2.png" width="425"/> </p>Dataset
Benchmark dataset: MNIST (http://deeplearning.net/data/mnist/mnist.pkl.gz).
Train the network to learn to generate digit images and the corresponding edges images of the digits images, inspired by CoGAN. We provide a python code to automaticlly download data and generate training data in the form of pairs of ( digit image, edges image ).
Train the model
When you train the model, you can tune the parameters in "options" folder.
python train.py
Test the model
python test.py