Awesome
Scalable Attributed-Graph Subspace Clustering (SASGC)
This repository provides Python code to reproduce experiments from the AAAI 2023 paper Scalable Attributed-Graph Subspace Clustering.
Run Experiments
Parameter List for run.py
Parameter | Type | Default | Description |
---|---|---|---|
dataset | string | acm | Name of the graph dataset (acm , dblp , arxiv , pubmed or wiki ). |
power | integer | 2 | First power to test. |
runs | integer | 5 | Number of runs. |
Best Propagation Orders
Dataset | Propagation order |
---|---|
acm | 2 |
dblp | 2 |
arxiv | 54 |
computers | 67 |
wiki | 4 |
pubmed | 100 |
Example
To run the model on computers for power p=67
and have the average execution time
python run.py --dataset=computers --power 67
Citation
If you use this code please do cite :
@inproceedings{fettal2023scalable,
title={Scalable Attributed-Graph Subspace Clustering},
author={Fettal, Chakib and Labiod, Lazhar and Nadif, Mohamed},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
volume={37},
year={2023}
}