Home

Awesome

TailorNet

This repository contains training and inference code for the following paper:

TailorNet: Predicting Clothing in 3D as a Function of Human Pose, Shape and Garment Style  
Chaitanya Patel*, Zhouyingcheng Liao*, Gerard Pons-Moll  
CVPR 2020 (ORAL)  

[ArXiv] [Project Website] [Dataset Repo] [Oral Presentation] [Results Video]

Teaser

Citation

Cite us if you use our model, code or data:

@inproceedings{patel20tailornet,
        title = {TailorNet: Predicting Clothing in 3D as a Function of Human Pose, Shape and Garment Style},
        author = {Patel, Chaitanya and Liao, Zhouyingcheng and Pons-Moll, Gerard},
        booktitle = {{IEEE} Conference on Computer Vision and Pattern Recognition (CVPR)},
        month = {jun},
        organization = {{IEEE}},
        year = {2020},
    }

Updates

Requirements

python3
pytorch
scipy
chumpy
psbody.mesh

Code works with psbody.mesh v0.4 , pytorch >= v1.0 , chumpy v0.7 and scipy v1.3 .

How to Run

TailorNet Per-vertex Error in mm on Test Set

... evaluated using evaluate function in utils/eval.py.

garment_classgenderTailorNet BaselineTailorNet Mixture Model
old-t-shirtfemale11.110.7
t-shirtfemale12.612.3
t-shirtmale11.411.2
shirtfemale14.214.1
shirtmale12.712.5
pantfemale4.74.8
pantmale8.18.1
short-pantfemale6.86.6
short-pantmale7.07.0
skirtfemale7.77.8

Training TailorNet yourself

Inference Time

In the paper, we report inference time to be 1-2 ms per frame(depending upon garment) which is averaged inference time over the batch of 21 samples(20-40 ms per batch). Apologies for the ambiguity. Running each sample separately takes almost same time as batch - around 20 ms per frame for all garments. However, note that TailorNet has 21 independent MLPs, so we believe that faster inference time is possible if MLPs are configured to run in parallel on GPU cores.

Misc

For any doubt or concert about the code, raise an issue on this repository.