Awesome
Recurrent Reinforcement Learning Implementation using Matlab/Octave
20210321 Update: A PyTorch-port of this repo is available at ceshine/RRL_PyTorch.
Reference: Stock Trading with Recurrent Reinforcement Learning (RRL) By Gabriel Molina
File Description
Core Functions
- costFunction.m
- updateFt.m
- rewardFunction.m
- featureNormalize.m
- sharpRatio.m
Utility Functions
- checkRRLGradient.m : Verify the correctness of gradient function in cost function
- getNumericalGradient.m : Approximate gradient (inefficiently) for verification
Test Function:
- testTWSE.m : Use Taiwan Weighted Stock Index from Taiwan Stock Exchange.
- testDAX.m : Use DAX index of Germany.