Awesome
[ECCV2022] 3D-PL: Domain Adaptive Depth Estimation with 3D-aware Pseudo-Labeling
[Paper] [Project Page]
<div align=center><img src="https://github.com/ccc870206/3D-PL/blob/main/figure/teaser.jpg"/></div>Installation
- This code was developed with Python 3.7.10 & Pytorch 1.8.1 & CUDA 11.3
- Other requirements: numpy, cv2, tensorboardX
- Clone this repo
git clone https://github.com/ccc870206/3D-PL.git
cd 3D-PL
Dataset
Target dataset: KITTI
Rename the main folder of kitti dataset as kitti_data
and put the folder under data/
data
|----kitti_data
|----2011_09_26
|----2011_09_28
|----.........
Source dataset: vKITTI (1.3.1)
Training (will release soon)
Testing
Download our pre-trained model and put the folder under checkpoints/
.
- Test the model pre-trained with single-image setting
python3 test.py --model test --name best_model_single_image --which_epoch best
- Test the model pre-trained with stereo-pair setting
python3 test.py --model test --name best_model_stereo_pair --which_epoch best