Home

Awesome

[ECCV2022] 3D-PL: Domain Adaptive Depth Estimation with 3D-aware Pseudo-Labeling

[Paper] [Project Page]

<div align=center><img src="https://github.com/ccc870206/3D-PL/blob/main/figure/teaser.jpg"/></div>

Installation

git clone https://github.com/ccc870206/3D-PL.git
cd 3D-PL

Dataset

Target dataset: KITTI

Rename the main folder of kitti dataset as kitti_data and put the folder under data/

data
  |----kitti_data 
         |----2011_09_26         
         |----2011_09_28        
         |----......... 

Source dataset: vKITTI (1.3.1)

Training (will release soon)

Testing

Download our pre-trained model and put the folder under checkpoints/.

python3 test.py --model test --name best_model_single_image --which_epoch best
python3 test.py --model test --name best_model_stereo_pair --which_epoch best

Acknowledgments

Code is inspired by T^2Net and GASDA.