Awesome
<div align="center">Improving Fractal Pre-training
<a href="https://pytorch.org/get-started/locally/"><img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-ee4c2c?logo=pytorch&logoColor=white"></a> <a href="https://pytorchlightning.ai/"><img alt="Lightning" src="https://img.shields.io/badge/-Lightning-792ee5?logo=pytorchlightning&logoColor=white"></a> <a href="https://hydra.cc/"><img alt="Config: Hydra" src="https://img.shields.io/badge/Config-Hydra-89b8cd"></a>
</div>This is the official PyTorch code for Improving Fractal Pre-training (arXiv).
@article{anderson2021fractal,
author = {Connor Anderson and Ryan Farrell},
title = {Improving Fractal Pre-training},
journal = {arXiv preprint arXiv:2110.03091},
year = {2021},
}
<div style="color: red">This README is incomplete (work in progress).</div>
Setup
The code uses PyTorch-Lightning for training and Hydra for configuration. Other required packages are listed in install_requirements.sh
.
# clone project
git clone https://github.com/catalys1/fractal-pretraining.git
cd fractal-pretraining
# [RECOMMENDED] set up a virtual environment
python3 -m venv venv_name # choose your prefered venv name
source venv/bin/activate
# install requirements
bash install_requirements.sh
# install project in editable mode
pip install -e fractal_learning
Sample and Render Iterated Function Systems
See the fractals sub-package for details on sampling IFS codes and rendering fractal images.
Training
See the training sub-package for details on pre-training with fractal images, as well as finetuning on other datasets.