Home

Awesome

PyPI - Python Version GitHub GitHub last commit Downloads

<p text-align="left"> <picture> <source media="(prefers-color-scheme: dark)" srcset="https://github.com/capitalone/DataProfiler/raw/gh-pages/docs/source/_static/images/DataProfilerDarkLogoLong.png"> <source media="(prefers-color-scheme: light)" srcset="https://github.com/capitalone/DataProfiler/raw/gh-pages/docs/source/_static/images/DataProfilerLogoLightThemeLong.png"> <img alt="Shows a black logo in light color mode and a white one in dark color mode." src="https://user-images.githubusercontent.com/25423296/163456779-a8556205-d0a5-45e2-ac17-42d089e3c3f8.png"> </picture> </p>

Data Profiler | What's in your data?

The DataProfiler is a Python library designed to make data analysis, monitoring, and sensitive data detection easy.

Loading Data with a single command, the library automatically formats & loads files into a DataFrame. Profiling the Data, the library identifies the schema, statistics, entities (PII / NPI) and more. Data Profiles can then be used in downstream applications or reports.

Getting started only takes a few lines of code (example csv):

import json
from dataprofiler import Data, Profiler

data = Data("your_file.csv") # Auto-Detect & Load: CSV, AVRO, Parquet, JSON, Text, URL

print(data.data.head(5)) # Access data directly via a compatible Pandas DataFrame

profile = Profiler(data) # Calculate Statistics, Entity Recognition, etc

readable_report = profile.report(report_options={"output_format": "compact"})

print(json.dumps(readable_report, indent=4))

Note: The Data Profiler comes with a pre-trained deep learning model, used to efficiently identify sensitive data (PII / NPI). If desired, it's easy to add new entities to the existing pre-trained model or insert an entire new pipeline for entity recognition.

For API documentation, visit the documentation page.

If you have suggestions or find a bug, please open an issue.

If you want to contribute, visit the contributing page.


Install

To install the full package from pypi: pip install DataProfiler[full]

If you want to install the ml dependencies without generating reports use DataProfiler[ml]

If the ML requirements are too strict (say, you don't want to install tensorflow), you can install a slimmer package with DataProfiler[reports]. The slimmer package disables the default sensitive data detection / entity recognition (labler)

Install from pypi: pip install DataProfiler


What is a Data Profile?

In the case of this library, a data profile is a dictionary containing statistics and predictions about the underlying dataset. There are "global statistics" or global_stats, which contain dataset level data and there are "column/row level statistics" or data_stats (each column is a new key-value entry).

The format for a structured profile is below:

"global_stats": {
    "samples_used": int,
    "column_count": int,
    "row_count": int,
    "row_has_null_ratio": float,
    "row_is_null_ratio": float,
    "unique_row_ratio": float,
    "duplicate_row_count": int,
    "file_type": string,
    "encoding": string,
    "correlation_matrix": list[list[int]], (*)
    "chi2_matrix": list[list[float]],
    "profile_schema": {
        string: list[int]
    },
    "times": dict[string, float],
},
"data_stats": [
    {
        "column_name": string,
        "data_type": string,
        "data_label": string,
        "categorical": bool,
        "order": string,
        "samples": list[str],
        "statistics": {
            "sample_size": int,
            "null_count": int,
            "null_types": list[string],
            "null_types_index": {
                string: list[int]
            },
            "data_type_representation": dict[string, float],
            "min": [null, float, str],
            "max": [null, float, str],
            "mode": float,
            "median": float,
            "median_absolute_deviation": float,
            "sum": float,
            "mean": float,
            "variance": float,
            "stddev": float,
            "skewness": float,
            "kurtosis": float,
            "num_zeros": int,
            "num_negatives": int,
            "histogram": {
                "bin_counts": list[int],
                "bin_edges": list[float],
            },
            "quantiles": {
                int: float
            },
            "vocab": list[char],
            "avg_predictions": dict[string, float],
            "data_label_representation": dict[string, float],
            "categories": list[str],
            "unique_count": int,
            "unique_ratio": float,
            "categorical_count": dict[string, int],
            "gini_impurity": float,
            "unalikeability": float,
            "precision": {
                'min': int,
                'max': int,
                'mean': float,
                'var': float,
                'std': float,
                'sample_size': int,
                'margin_of_error': float,
                'confidence_level': float
            },
            "times": dict[string, float],
            "format": string
        },
        "null_replication_metrics": {
            "class_prior": list[int],
            "class_sum": list[list[int]],
            "class_mean": list[list[int]]
        }
    }
]

(*) Currently the correlation matrix update is toggled off. It will be reset in a later update. Users can still use it as desired with the is_enable option set to True.

The format for an unstructured profile is below:

"global_stats": {
    "samples_used": int,
    "empty_line_count": int,
    "file_type": string,
    "encoding": string,
    "memory_size": float, # in MB
    "times": dict[string, float],
},
"data_stats": {
    "data_label": {
        "entity_counts": {
            "word_level": dict[string, int],
            "true_char_level": dict[string, int],
            "postprocess_char_level": dict[string, int]
        },
        "entity_percentages": {
            "word_level": dict[string, float],
            "true_char_level": dict[string, float],
            "postprocess_char_level": dict[string, float]
        },
        "times": dict[string, float]
    },
    "statistics": {
        "vocab": list[char],
        "vocab_count": dict[string, int],
        "words": list[string],
        "word_count": dict[string, int],
        "times": dict[string, float]
    }
}

The format for a graph profile is below:

"num_nodes": int,
"num_edges": int,
"categorical_attributes": list[string],
"continuous_attributes": list[string],
"avg_node_degree": float,
"global_max_component_size": int,
"continuous_distribution": {
    "<attribute_1>": {
        "name": string,
        "scale": float,
        "properties": list[float, np.array]
    },
    "<attribute_2>": None,
    ...
},
"categorical_distribution": {
    "<attribute_1>": None,
    "<attribute_2>": {
        "bin_counts": list[int],
        "bin_edges": list[float]
    },
    ...
},
"times": dict[string, float]

Profile Statistic Descriptions

Structured Profile

global_stats:

data_stats:

Unstructured Profile

global_stats:

data_stats:

Graph Profile

continuous_distribution:

categorical_distribution:

Support

Supported Data Formats

Data Types

Data Types are determined at the column level for structured data

Data Labels

Data Labels are determined per cell for structured data (column/row when the profiler is used) or at the character level for unstructured data.

Get Started

Load a File

The Data Profiler can profile the following data/file types:

The profiler should automatically identify the file type and load the data into a Data Class.

Along with other attributtes the Data class enables data to be accessed via a valid Pandas DataFrame.

# Load a csv file, return a CSVData object
csv_data = Data('your_file.csv')

# Print the first 10 rows of the csv file
print(csv_data.data.head(10))

# Load a parquet file, return a ParquetData object
parquet_data = Data('your_file.parquet')

# Sort the data by the name column
parquet_data.data.sort_values(by='name', inplace=True)

# Print the sorted first 10 rows of the parquet data
print(parquet_data.data.head(10))

# Load a json file from a URL, return a JSONData object
json_data = Data('https://github.com/capitalone/DataProfiler/blob/main/dataprofiler/tests/data/json/iris-utf-8.json')

If the file type is not automatically identified (rare), you can specify them specifically, see section Specifying a Filetype or Delimiter.

Profile a File

Example uses a CSV file for example, but CSV, JSON, Avro, Parquet or Text also work.

import json
from dataprofiler import Data, Profiler

# Load file (CSV should be automatically identified)
data = Data("your_file.csv")

# Profile the dataset
profile = Profiler(data)

# Generate a report and use json to prettify.
report  = profile.report(report_options={"output_format": "pretty"})

# Print the report
print(json.dumps(report, indent=4))

Updating Profiles

Currently, the data profiler is equipped to update its profile in batches.

import json
from dataprofiler import Data, Profiler

# Load and profile a CSV file
data = Data("your_file.csv")
profile = Profiler(data)

# Update the profile with new data:
new_data = Data("new_data.csv")
profile.update_profile(new_data)

# Print the report using json to prettify.
report  = profile.report(report_options={"output_format": "pretty"})
print(json.dumps(report, indent=4))

Note that if the data you update the profile with contains integer indices that overlap with the indices on data originally profiled, when null rows are calculated the indices will be "shifted" to uninhabited values so that null counts and ratios are still accurate.

Merging Profiles

If you have two files with the same schema (but different data), it is possible to merge the two profiles together via an addition operator.

This also enables profiles to be determined in a distributed manner.

import json
from dataprofiler import Data, Profiler

# Load a CSV file with a schema
data1 = Data("file_a.csv")
profile1 = Profiler(data1)

# Load another CSV file with the same schema
data2 = Data("file_b.csv")
profile2 = Profiler(data2)

profile3 = profile1 + profile2

# Print the report using json to prettify.
report  = profile3.report(report_options={"output_format": "pretty"})
print(json.dumps(report, indent=4))

Note that if merged profiles had overlapping integer indices, when null rows are calculated the indices will be "shifted" to uninhabited values so that null counts and ratios are still accurate.

Profiler Differences

For finding the change between profiles with the same schema we can utilize the profile's diff function. The diff will provide overall file and sampling differences as well as detailed differences of the data's statistics. For example, numerical columns have both t-test to evaluate similarity and PSI (Population Stability Index) to quantify column distribution shift. More information is described in the Profiler section of the Github Pages.

Create the difference report like this:

import json
import dataprofiler as dp

# Load a CSV file
data1 = dp.Data("file_a.csv")
profile1 = dp.Profiler(data1)

# Load another CSV file
data2 = dp.Data("file_b.csv")
profile2 = dp.Profiler(data2)

diff_report = profile1.diff(profile2)
print(json.dumps(diff_report, indent=4))

Profile a Pandas DataFrame

import pandas as pd
import dataprofiler as dp
import json

my_dataframe = pd.DataFrame([[1, 2.0],[1, 2.2],[-1, 3]])
profile = dp.Profiler(my_dataframe)

# print the report using json to prettify.
report = profile.report(report_options={"output_format": "pretty"})
print(json.dumps(report, indent=4))

# read a specified column, in this case it is labeled 0:
print(json.dumps(report["data_stats"][0], indent=4))

Unstructured Profiler

In addition to the structured profiler, DataProfiler provides unstructured profiling for the TextData object or string. The unstructured profiler also works with list[string], pd.Series(string) or pd.DataFrame(string) given profiler_type option specified as unstructured. Below is an example of the unstructured profiler with a text file.

import dataprofiler as dp
import json

my_text = dp.Data('text_file.txt')
profile = dp.Profiler(my_text)

# print the report using json to prettify.
report = profile.report(report_options={"output_format": "pretty"})
print(json.dumps(report, indent=4))

Another example of the unstructured profiler with pd.Series of strings is given as below, with the profiler option profiler_type='unstructured'

import dataprofiler as dp
import pandas as pd
import json

text_data = pd.Series(['first string', 'second string'])
profile = dp.Profiler(text_data, profiler_type='unstructured')

# print the report using json to prettify.
report = profile.report(report_options={"output_format": "pretty"})
print(json.dumps(report, indent=4))

Graph Profiler

DataProfiler also provides the ability to profile graph data from a csv file. Below is an example of the graph profiler with a graph data csv file:

import dataprofiler as dp
import pprint

my_graph = dp.Data('graph_file.csv')
profile = dp.Profiler(my_graph)

# print the report using pretty print (json dump does not work on numpy array values inside dict)
report = profile.report()
printer = pprint.PrettyPrinter(sort_dicts=False, compact=True)
printer.pprint(report)

Visit the documentation page for additional Examples and API details

References

Sensitive Data Detection with High-Throughput Neural Network Models for Financial Institutions
Authors: Anh Truong, Austin Walters, Jeremy Goodsitt
2020 https://arxiv.org/abs/2012.09597
The AAAI-21 Workshop on Knowledge Discovery from Unstructured Data in Financial Services