Home

Awesome

Solving Oscillation Problem in Post-Training Quantization Through a Theoretical Perspective (CVPR 2023) (Link)

Overview

<img src="imgs/overview.png" alt="overview" style="zoom:50%;" />

Prerequisites

Getting Started

Requirements

Data preparation

Add the imagenet path to the "data.path" in the config file.

Run MRECG

Results

Method\ModelW/ARes18Res50MBV2×1.0MBV2×0.75MBV2×0.5MBV2×0.35Reg600M
Full Prec.32/3271.0176.6372.2069.9564.6060.0873.52
Pretrained-linklinklinklinklinklinklink
Ours+BRECQ4/469.0674.8468.5664.5555.2650.67-
Ours+BRECQ2/465.6170.0458.4952.5041.1635.46-
Ours+BRECQ3/365.6470.6857.1450.2135.1130.26-
Ours+BRECQ2/252.0243.7213.849.463.433.22-
Ours+QDROP4/469.4675.3568.8464.3955.6450.9471.22
Ours+QDROP2/466.1870.5357.8553.7140.0935.8565.16
Ours+QDROP3/366.3071.9258.4051.7838.4332.9666.08
Ours+QDROP2/254.4656.8214.4411.404.183.0943.67

Due to the presence of random numbers in the experiment, the actual model accuracy may be slightly high or low.

Acknowledgements

Our code relies on the MQBench package.

Reference

@article{ma2023solving,
  title={Solving Oscillation Problem in Post-Training Quantization Through a Theoretical Perspective},
  author={Yuexiao Ma and Huixia Li and Xiawu Zheng and Xuefeng Xiao and Rui Wang and Shilei Wen and Xin Pan and Fei Chao and Rongrong Ji},
  journal={arXiv preprint arXiv:2303.11906},
  year={2023}
}