Awesome
Online Multi-Granularity Distillation for GAN Compression (ICCV2021)
This repository contains the pytorch codes and trained models described in the ICCV2021 paper "Online Multi-Granularity Distillation for GAN Compression". This algorithm is proposed by ByteDance, Intelligent Creation, AutoML Team (字节跳动-智能创作-AutoML团队).
Authors: Yuxi Ren*, Jie Wu*, Xuefeng Xiao, Jianchao Yang.
Overview
Performance
Prerequisites
- Linux
- Python 3
- CPU or NVIDIA GPU + CUDA CuDNN
Getting Started
Installation
-
Clone this repo:
git clone https://github.com/bytedance/OMGD.git cd OMGD
-
Install dependencies.
conda create -n OMGD python=3.7 conda activate OMGD pip install torch==1.7.0 torchvision==0.8.0 torchaudio==0.7.0 pip install -r requirements.txt
Data preparation
-
edges2shoes
- Download the dataset
bash datasets/download_pix2pix_dataset.sh edges2shoes-r
- Get the statistical information for the ground-truth images for your dataset to compute FID.
bash datasets/download_real_stat.sh edges2shoes-r B
-
cityscapes
- Download the dataset Download the dataset (gtFine_trainvaltest.zip and leftImg8bit_trainvaltest.zip) from here, and preprocess it.
python datasets/get_trainIds.py database/cityscapes-origin/gtFine/ python datasets/prepare_cityscapes_dataset.py \ --gtFine_dir database/cityscapes-origin/gtFine \ --leftImg8bit_dir database/cityscapes-origin/leftImg8bit \ --output_dir database/cityscapes \ --train_table_path datasets/train_table.txt \ --val_table_path datasets/val_table.txt
- Get the statistical information for the ground-truth images for your dataset to compute FID.
bash datasets/download_real_stat.sh cityscapes A
-
horse2zebra
- Download the dataset
bash datasets/download_cyclegan_dataset.sh horse2zebra
- Get the statistical information for the ground-truth images for your dataset to compute FID.
bash datasets/download_real_stat.sh horse2zebra A bash datasets/download_real_stat.sh horse2zebra B
-
summer2winter
- Download the dataset
bash datasets/download_cyclegan_dataset.sh summer2winter_yosemite
- Get the statistical information for the ground-truth images for your dataset to compute FID from here
Pretrained Model
We provide a list of pre-trained models in link. DRN model can used to compute mIoU link.
Training
-
pretrained vgg16 we should prepare weights of a vgg16 to calculate the style loss
-
train student model using OMGD Run the following script to train a unet-style student on cityscapes dataset, all scripts for cyclegan and pix2pix on horse2zebra,summer2winter,edges2shoes and cityscapes can be found in ./scripts
bash scripts/unet_pix2pix/cityscapes/distill.sh
Testing
-
test student models, FID or mIoU will be calculated, take unet-style generator on cityscapes dataset as an example
bash scripts/unet_pix2pix/cityscapes/test.sh
Citation
If you use this code for your research, please cite our paper.
@article{ren2021online,
title={Online Multi-Granularity Distillation for GAN Compression},
author={Ren, Yuxi and Wu, Jie and Xiao, Xuefeng and Yang, Jianchao},
journal={arXiv preprint arXiv:2108.06908},
year={2021}
}
Acknowledgements
Our code is developed based on GAN Compression