Awesome
BN-NAS: Neural Architecture Search with Batch Normalization
Code for BN-NAS: Neural Architecture Search with Batch Normalization accepted by ICCV2021
<!-- ![introduce image](framework.png) --> <img width="740" height="300" src="framework.png"/>This project is the re-implementation based on ABS and SPOS.
Requirements
- Pytorch 1.3
- Python 3.5+
- Apex
The requirements.txt file lists other Python libraries that this project depends on, and they will be installed using: pip3 install -r requirements.txt
Results
method | Architecture | FLOPs | Params | Top-1 | Supernet | ea_log | retrain model |
---|---|---|---|---|---|---|---|
BNNAS | [3, -1, 0, 4, 0, -1, -1, 0, 4, -1, 4, 4, 1, 4, 2, 0, 0, 4, 0, 2, 2] | 473.5M | 5.2M | 75.5 | supernet | ea_log | retrain model |
SPOS | [0, -1, 0, 0, 4, -1, -1, 2, 0, -1, 4, 4, 3, 0, 2, 1, 0, 4, 2, 5, 2] | 468.8M | 5.8M | 75.4 | supernet | ea_log | retrain model |
Usage
Step 1: Setup Dataset
Run utils/get_flops_lookup_table.sh
to generate flops lookup table which is required in Uniform Sampling.
Step 2: Training supernet
cd BNNAS/supernet
python3 -m torch.distributed.launch --nproc_per_node=8 main.py \
--train_dir YOUR_TRAINDATASET_PATH
Step 3: Search subnets
cd BNNAS/search
cp ../supernet/checkpoint.pth.tar checkpoint.pth.tar
python3 ea.py
Step 3.5 (optional): Show searching result
download the ea_results.pth.tar and put it in BNNAS/search/log
cd BNNAS/search
python3 eval.py
Step 4: Subnet retraining
cd BNNAS/retrain
python3 -m torch.distributed.launch --nproc_per_node=8 train_from_scratch.py \
--train_dir $YOUR_TRAINDATASET_PATH --test_dir $YOUR_TESTDATASET_PATH
Usage of SPOS
Step 1: Setup Dataset
Run utils/get_flops_lookup_table.sh
to generate flops lookup table which is required in Uniform Sampling.
Step 2: Training supernet
cd SPOS/supernet
python3 -m torch.distributed.launch --nproc_per_node=8 main.py \
--train_dir YOUR_TRAINDATASET_PATH
Step 3: Search subnets
modify the ImageNet Path in SPOS/search/imagenet_dataset.py
cd SPOS/search
cp ../supernet/checkpoint.pth.tar checkpoint.pth.tar
python3 ea.py
Step 3.5 (optional): Show searching result
download the ea_results.pth.tar and put it in SPOS/search/log
cd SPOS/search
python3 eval.py
Step 4: Subnet retraining
cd SPOS/retrain
python3 -m torch.distributed.launch --nproc_per_node=8 train_from_scratch.py \
--train_dir $YOUR_TRAINDATASET_PATH --test_dir $YOUR_TESTDATASET_PATH
Thanks
This implementation of BNNAS is based on ABS and SPOS. Please ref to their reposity for more details.
Citation
If you find that this project helps your research, please consider citing our paper:
@inproceedings{chen2021bn,
title={Bn-nas: Neural architecture search with batch normalization},
author={Chen, Boyu and Li, Peixia and Li, Baopu and Lin, Chen and Li, Chuming and Sun, Ming and Yan, Junjie and Ouyang, Wanli},
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
pages={307--316},
year={2021}
}