Awesome
[WACV 2023] Audio-Visual Efficient Conformer for Robust Speech Recognition
Computer Vision Lab, CAIDAS, IFI, University of Würzburg
Official implementation of the Audio-Visual Efficient Conformer (AVEC) for Robust Speech Recognition.
Audio-Visual Efficient Conformer Paper | Arxiv | Demo Notebook | Installation | Models | Contact
End-to-end Automatic Speech Recognition (ASR) systems based on neural networks have seen large improvements in recent years. The availability of large scale hand-labeled datasets and sufficient computing resources made it possible to train powerful deep neural networks, reaching very low Word Error Rate (WER) on academic benchmarks. However, despite impressive performance on clean audio samples, a drop of performance is often observed on noisy speech. In this work, we propose to improve the noise robustness of the recently proposed Efficient Conformer Connectionist Temporal Classification (CTC)-based architecture by processing both audio and visual modalities. We improve previous lip reading methods using an Efficient Conformer back-end on top of a ResNet-18 visual front-end and by adding intermediate CTC losses between blocks. We condition intermediate block features on early predictions using Inter CTC residual modules to relax the conditional independence assumption of CTC-based models. We also replace the Efficient Conformer grouped attention by a more efficient and simpler attention mechanism that we call patch attention. We experiment with publicly available Lip Reading Sentences 2 (LRS2) and Lip Reading Sentences 3 (LRS3) datasets. Our experiments show that using audio and visual modalities allows to better recognize speech in the presence of environmental noise and significantly accelerate training, reaching lower WER with 4 times less training steps. Our Audio-Visual Efficient Conformer (AVEC) model achieves state-of-the-art performance, reaching WER of 2.3% and 1.8% on LRS2 and LRS3 test sets.
Transcription Demo (Visual-Only, Audio-Only and Audio-Visual)
<img src='media/macron_transcribed.gif'></img>
Method
The Audio-Visual Efficient Conformer is composed of 4 main components: An audio encoder, a visual encoder, an audio-visual fusion module and an audio-visual encoder. The audio and visual encoder are separated into modality specific front-end networks to transform each input modality into temporal sequences. Efficient Conformer back-end networks are used to model local and global temporal relationships. The full model is trained end-to-end using intermediate CTC losses between Conformer blocks in addition of the output CTC layer.
<img src="media/AVEC.jpg" width="100%">Installation
Clone GitHub repository and set up environment
git clone https://github.com/burchim/AVEC.git && cd AVEC
pip install -r requirements.txt
Install ctcdecode for beam search decoding (optional).
git clone --recursive https://github.com/parlance/ctcdecode.git
cd ctcdecode
pip install .
cd ..
Install ibug.face_detection and ibug.face_alignment for face detection and alignment (optional).
# ibug.face_detection
git clone https://github.com/hhj1897/face_detection.git
cd face_detection
git lfs pull
pip install -e .
cd ..
# ibug.face_alignment
git clone https://github.com/hhj1897/face_alignment.git
cd face_alignment
pip install -e .
cd ..
Download pretrained model checkpoints and tokenizers.
python download_checkpoints_and_tokenizers.py
Download And Prepare Datasets
We used 3 publicly available datasets in this work. The Lip Reading in the Wild (LRW) dataset was used for visual pre-training and the Lip Reading Sentences 2 (LRS2) and Lip Reading Sentences 3 (LRS3) datasets were used for training and evaluation. LRW is an audio-visual word recognition dataset consisting of short video segments containing a single word out of a vocabulary of 500. LRS2 and LRS3 are audio-visual speech recognition datasets composed of 224.1 hours from the BBC television and 438.9 hours from TED and TEDx talks.
# You will need to add your datasets username/password before running script
python download_and_prepare_datasets.py
Running an experiment
You can run an experiment by providing a config file using the '--config_file' flag. Training checkpoints and logs will automatically be saved in the callback folder specified in the config file.
python main.py --config_file configs/config_file.py
Evaluation
Models can be evaluated by selecting the evaluation mode and by providing a checkpoint to load with the '--checkpoint' flag. The checkpoint must be placed in the config callback folder.
python main.py --config_file configs/config_file.py --checkpoint checkpoint.ckpt --mode evaluation
Options
# Args
-c / --config_file type=str default="configs/LRS23/AV/EffConfInterCTC.py" help="Python configuration file containing model hyperparameters"
-m / --mode type=str default="training" help="Mode : training, training, evaluation, swa, pass, eval_time"
-i / --checkpoint type=str default=None help="Load model from checkpoint name"
-j / --num_workers type=int default=0 help="Number of data loading workers"
--cpu action="store_true" help="Load model on cpu"
--load_last action="store_true" help="Load last model checkpoint"
# Distributed
-d / --distributed action="store_true" help="Distributed data parallelization"
--parallel action="store_true" help="Parallelize model using data parallelization"
--world_size type=int default=torch.cuda.device_count() help="Number of available GPUs"
--dist_log action="store_true" help="Log each GPU process instead only GPU:0"
--dist_addr type=str default='localhost' help="MASTER_ADDR"
--dist_port type=str default='29501' help="MASTER_PORT"
--backend type=str default='nccl' help="backend"
# Training
--steps_per_epoch type=int default=None help="Number of steps per epoch"
--saving_period_step type=int default=None help="Model saving every 'n' steps"
--saving_period_epoch type=int default=1 help="Model saving every 'n' epochs"
--log_figure_period_step type=int default=None help="Log figure every 'n' steps"
--log_figure_period_epoch type=int default=1 help="Log figure every 'n' epochs"
--step_log_period type=int default=100 help="Training step log period"
--no_eval_training action="store_true" help="Do not evaluate training samples"
# Eval
--eval_period_epoch type=int default=1 help="Model evaluation every 'n' epochs"
--eval_period_step type=int default=None help="Model evaluation every 'n' steps"
--batch_size_eval type=int default=None help="Evaluation batch size"
--verbose_eval type=int default=0 help="Evaluation verbose level"
--eval_steps type=int default=None help="Number of evaluation steps"
# Info
--show_dict action="store_true" help="Show model dict summary"
--show_modules action="store_true" help="Show model named modules"
# SWA
--swa_epochs nargs="+" default=None help="Start epoch / end epoch for swa"
--swa_epochs_list nargs="+" default=None help="List of checkpoints epochs for swa"
--swa_type type=str default="equal" help="Stochastic weight averaging type (equal/exp)"
# Debug
--detect_anomaly action="store_true" help="Enable or disable the autograd anomaly detection"
Models
Evaluate Models:
./eval_models.sh
LRS Model | Params (M) | Training Datasets | LRS2 test WER (%) | LRS3 test WER (%) | GPUs |
---|---|---|---|---|---|
Audio-only Efficient Conformer | 31.5 | LRS2&3 | 2.4 | 2.0 | 4 x RTX 2080 Ti |
Visual-only Efficient Conformer | 40.9 | LRW, LRS2&3 | 29.8 | 37.5 | 4 x A100 |
Audio-visual Efficient Conformer | 61.7 | LRW, LRS2&3 | 2.3 | 1.8 | 4 x A100 |
Neural LM | Params (M) | Training Datasets | GPUs |
---|---|---|---|
Transformer LM | 86.6 | LibriSpeech LM Corpus, LRS2&3 | 4 x RTX 2080 Ti |
LRW Model | Params (M) | Training Datasets | GPUs |
---|---|---|---|
LRW Efficient Conformer | 40.9 | LRW | 4 x RTX 2080 Ti |
Citation
@InProceedings{Burchi_2023_WACV,
author = {Burchi, Maxime and Timofte, Radu},
title = {Audio-Visual Efficient Conformer for Robust Speech Recognition},
booktitle = {Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)},
month = {January},
year = {2023},
pages = {2258-2267}
}
Contact
- Maxime Burchi @burchim
- Email: maxime.burchi@uni-wuerzburg.de