Awesome
PyTorch Implementation of AnimeGANv2
Updates
-
2021-10-17
Add weights for FacePortraitV2. -
2021-11-07
Thanks to ak92501, a web demo is integrated to Huggingface Spaces with Gradio. -
2021-11-07
Thanks to xhlulu, thetorch.hub
model is now available. See Torch Hub Usage.
Basic Usage
Inference
python test.py --input_dir [image_folder_path] --device [cpu/cuda]
Torch Hub Usage
You can load the model via torch.hub
:
import torch
model = torch.hub.load("bryandlee/animegan2-pytorch", "generator").eval()
out = model(img_tensor) # BCHW tensor
Currently, the following pretrained
shorthands are available:
model = torch.hub.load("bryandlee/animegan2-pytorch:main", "generator", pretrained="celeba_distill")
model = torch.hub.load("bryandlee/animegan2-pytorch:main", "generator", pretrained="face_paint_512_v1")
model = torch.hub.load("bryandlee/animegan2-pytorch:main", "generator", pretrained="face_paint_512_v2")
model = torch.hub.load("bryandlee/animegan2-pytorch:main", "generator", pretrained="paprika")
You can also load the face2paint
util function:
from PIL import Image
face2paint = torch.hub.load("bryandlee/animegan2-pytorch:main", "face2paint", size=512)
img = Image.open(...).convert("RGB")
out = face2paint(model, img)
More details about torch.hub
is in the torch docs
Weight Conversion from the Original Repo (Tensorflow)
- Install the original repo's dependencies: python 3.6, tensorflow 1.15.0-gpu
- Install torch >= 1.7.1
- Clone the original repo & run
git clone https://github.com/TachibanaYoshino/AnimeGANv2
python convert_weights.py
<details>
<summary>samples</summary>
<br>
Results from converted `Paprika` style model (input image, original tensorflow result, pytorch result from left to right)
<img src="./samples/compare/1.jpg" width="960"> <img src="./samples/compare/2.jpg" width="960"> <img src="./samples/compare/3.jpg" width="960">
</details>Note: Results from converted weights slightly different due to the bilinear upsample issue
Additional Model Weights
Webtoon Face [ckpt]
<details> <summary>samples</summary>Trained on <b>256x256</b> face images. Distilled from webtoon face model with L2 + VGG + GAN Loss and CelebA-HQ images.
</details>
Face Portrait v1 [ckpt]
<details> <summary>samples</summary>Trained on <b>512x512</b> face images.
</details>Face Portrait v2 [ckpt]
<details> <summary>samples</summary>Trained on <b>512x512</b> face images. Compared to v1, 🔻beautify
🔺robustness
🦑 🎮 🔥
</details>