Home

Awesome

Deep Convolutional Priors for Indoor Scene Synthesis

PyTorch code for our SIGGRAPH Paper Deep Convolutional Priors for Indoor Scene Synthesis

Fully tested on Ubuntu 18.04 LTS, partially tested on macOS High Sierra. Note: utils.stdout_redirected() will not work with Windows. This is only used to suppress the C++ runtime warnings. You should remove relevant usage of this context manager if you want to run the code on Windows.

Requires PyTorch 0.4 to run. Also assumes CUDA is installed and a CUDA-compatible GPU is available. Requires Python>=3.6 since some new features, notably f-strings, are used throught the codebase. Additional python library requirements could be found at /deep-synth/requirements.txt. Run

pip install -r requirements.txt

to install.

Creating the Dataset

Current unavailable.

Training the Models

We provide three training scripts: continue_train.py, location_train.py and rotation_train.py that trains each of the three neural network components. The neural networks are described in detail in section 5 of our paper.

Pre-trained models are current unavailable.

1.Training the continue predictor (Section 5.1)

Run

python continue_train.py --data-dir dataset_location --save-dir save_destination --train-size train_set_size --use-count

to train in the same way as what we did. Available arguments:

Since the size of different room datasets are different, we standardized it and call each 10,000 rooms seen as a epoch. Empirically, the continue predictor should be usable after 50 epochs.

2.Training the location-category predictor (Section 5.2)

Run

python location_train.py --data-dir dataset_location --save-dir save_destination --train-size train_set_size --use-count --progressive-p 

to train in the same way as what we did. In addition to the parameters outlined above, there are:

Location-category predictor should be usable after 300 epochs. The training process for this is quite unstable, so diffrent epochs might behave differently, especially after test-time tempering. Experiment with them if you like.

If --progressive-p is set, validation loss will increase and accuracy will decrease as the percentage of auxiliary categories increases. This behavior is normal since we are not really training a classifier here.

3.Training the instance-orientation predictor (Section 5.3)

Run

python rotation_train.py --data-dir dataset_location --save-dir save_destination --train-size train_set_size

to train in the same way as what we did. Note that we actually did not include category count information for this network, so --use-count is not available.

Instance-orientation predictor should be usable after 300 epochs of training.

Test-time Synthesis

scene_synth.py contains the code used for test time synthesis. batch_synth.py is a simple script that calls the synthesis code. To use it, run

python batch_synth.py --save-dir save_destination --data-dir dataset_location --model-dir model_location --continue-epoch epoch_number --location_epoch epoch_number --rotation_epoch epoch_number --start start_room_index --end end_room_index

Available arguments are:

In addition, four parameters can be specified to change the synthesizer behavior, they defaults to what we used to produce the results in the paper:

There are three ways you can view a synthesized scene:

Exporting and rendering scene meshes using SSTK

First download and build the SSTK library (use the v0.7.0 branch of the code). Then, you can run a variety of scripts:

#!/usr/bin/env bash

SSTK="${HOME}/code/sstk/"  # base directory of the SSTK library
CFG="${SSTK}/ssc/config/render.json"  # configuration file
INPUT_JSON="${HOME}/Dropbox/fuzzybox/1.json"  # input .json file

# Render regular colors
${SSTK}/ssc/render-file.js --config_file ${CFG} --assetType scene --material_type phong --input ${INPUT_JSON}

# Render category colors
${SSTK}/ssc/render-file.js --config_file ${CFG} --assetType scene --material_type phong --color_by category --use_ambient_occlusion --ambient_occlusion_type edl --input ${INPUT_JSON}

# Render instance ids
${SSTK}/ssc/render-file.js --config_file ${CFG} --assetType scene --material_type phong --color_by objectId --use_ambient_occlusion --ambient_occlusion_type edl --input ${INPUT_JSON}

# Render neutral-colored offwhite
${SSTK}/ssc/render-file.js --config_file ${CFG} --assetType scene --color_by color --color '#fef9ed' --material_type phong --use_ambient_occlusion --ambient_occlusion_type edl --input ${INPUT_JSON}

# If you want to render from specific camera view (embedded in generated .json files) add the argument --use_scene_camera orthographic
# This assumes the .json file contains a block similar to the example below:
# "camera": {
#   "orthographic":  {
#     "left": 29.300252109682454, 
#     "right": 35.35025210968245, 
#     "bottom": 33.97043045231174, 
#     "top": 40.020430452311736, 
#     "far": 2.199999939650297, 
#     "near": 6.749999939650297
#   }
# }

Running the Baseline Experiments

Running the occurence baseline

To run the occurence baseline, first run categoryCounts_train.py to train the NADE model, the arguments are explained above. Copy the final saved model to the same directory as other models, and then call SceneSynthOccurenceBasline from scene_synth_occurence_baseline.py in similar ways outlined in batch_synth.py, with two additional parameters: the first is the epoch of the NADE model, and the second is the size of the training set used to train the NADE.

Running the pairwise arrangement baseline

To run the arrangement baseline, first generate pairwise object arrangement priors from the desired training set of scenes using the following commands (example uses office dataset):

python -m priors.observations --task collect --input data/office/json --priors_dir data/office/priors
python -m priors.observations --task save_pkl --input data/office/priors --priors_dir data/office/priors --house_dir data/office/json
python -m priors.pairwise --task fit --priors_dir data/office/priors

You can then run the arrangement baseline, giving an input scene .json file (to specify the set of objects that are to be iteratively placed into the empty room). The example uses the first training scene for illustration:

python -m priors.arrangement --priors_dir data/office/priors --input data/office/json/0.json --output_dir arrangement_baseline_test

Running the arrangement comparison

To use our code to rearrange the rooms (as what we did in the arrangement baseline comparison), call SceneSynthArrangementBaseline from scene_synth_arrangement_baseline.py in exactly the same way as outlined in batch_synth.py.

Citation

Please cite the paper if you use this code for research:

@article{wang2018deep,
  title={Deep convolutional priors for indoor scene synthesis},
  author={Wang, Kai and Savva, Manolis and Chang, Angel X and Ritchie, Daniel},
  journal={ACM Transactions on Graphics (TOG)},
  volume={37},
  number={4},
  pages={70},
  year={2018},
  publisher={ACM}
}