Home

Awesome

Locate-Globally-Segment-locally-A-Progressive-Architecture-With-Knowledge-Review-Network-for-SOD

!!!2021-7-3. We have corrected some errors. The pre-trained SGL-KRN model and PA-KRN model will be released soon...

!!!2021-8-12. The pre-trained SGL-KRN model and PA-KRN model have been released.

This repository is the official implementation of PA-KRN and SGL-KRN, which is proposed in "Locate Globally, Segment locally: A Progressive Architecture With Knowledge Review Network for Salient Object Detection." PDF

image

Prerequisites

Usage

1. Install body-atttention sampler related tools (MobulaOP)

# Clone the project
git clone https://github.com/wkcn/MobulaOP

# Enter the directory
cd MobulaOP

# Install MobulaOP
pip install -v -e .

2. Clone the repository

git clone https://github.com/bradleybin/Locate-Globally-Segment-locally-A-Progressive-Architecture-With-Knowledge-Review-Network-for-SOD

The directory shows as follow:

├─demo
│   ├── attention_sampler
│   ├── data
│   ├── dataset
│   ├── networks
│   ├── results
│   ├── KRN.py
│   ├── KRN_edge.py
│   ├── main_clm.py
│   ├── main_fsm.py
│   ├── main_joint.py
│   ├── main_SGL_KRN.py
│   ├── Solver_clm.py
│   ├── Solver_fsm.py
│   └── Solver_joint.py
├── MobulaOP

3. Download datasets

Download the DUTS and other datasets and unzip them into demo/data folder. (Refer to PoolNet repository)

The directory shows as follow:

├─DUTS
│        └── DUTS-TR
│                  ├── DUTS-TR-Image
│                  ├── DUTS-TR-Mask
│                  └── DUTS-TR-Edge
├─DUTS-TE
│        ├── Imgs
│        └── test.lst
├─PASCALS
│        ├── Imgs
│        └── test.lst
├─DUTOMRON
│        ├── Imgs
│        └── test.lst
├─HKU-IS
│        ├── Imgs
│        └── test.lst
└─ECSSD
         ├── Imgs
         └── test.lst

4. Download Pretrained ResNet-50 Model for backbone

Download ResNet-50 pretrained models Google Drive and save it into demo/dataset/pretrained folder.

5. Train

5.1 SGL-KRN

cd demo
python main_SGL_KRN.py

After training, the resulting model will be stored under results/sgl_krn/run-* folder.

5.2 PA-KRN

The whole system can be trained in an end-to-end manner. To get finer results, we first train CLM and FSM sequentially and then combine them to fine-tune.

cd demo
  1. Train CLM.
python main_clm.py

After training, the resulting model will be stored under results/clm/run-* folder.

  1. Train FSM.
python main_fsm.py  --clm_model path/to/pretrained/clm/folder/

After training, the resulting model will be stored under results/fsm/run-* folder, and * changes accordingly. 'path/to/pretrained/clm/folder/' is the path to pretrained clm folder.

  1. Train PA-KRN.
python main_joint.py  --clm_model path/to/pretrained/clm/folder/  --fsm_model path/to/pretrained/fsm/folder/

After training, the resulting model will be stored under results/joint/run-* folder. 'net_*.pth' is the parameter of CLM model and '.pth' is the parameter of FSM model.

6. Test

Download pretrained SGL-KRN and PA-KRN models Google Drive.

6.1 SGL-KRN

For DUTS-TE dataset testing.

python main_SGL_KRN.py --mode test --test_model path/to/pretrained/SGL_KRN/folder/ --test_fold path/to/test/folder/ --sal_mode t

'sal_mode' of ECSSD, PASCALS, DUT-OMRON, and HKU-IS are 'e', 'p', 'd', and 'h', respectively.

6.2 PA-KRN

For DUTS-TE dataset testing.

python main_joint.py --mode test --clm_model path/to/pretrained/clm/folder/  --fsm_model path/to/pretrained/fsm/folder/ --test_fold path/to/test/folder/ --sal_mode t

'sal_mode' of ECSSD, PASCALS, DUT-OMRON, and HKU-IS are 'e', 'p', 'd', and 'h', respectively.

7. Saliency maps

We provide the pre-computed saliency maps from our paper Google Drive | Baidu Disk (pwd: 9wxg).

Thanks to PoolNet repository and AttentionSampler repository.

Citing PAKRN

Please cite with the following Bibtex code:

@inproceedings{xu2021locate,
  title={Locate globally, segment locally: A progressive architecture with knowledge review network for salient object detection},
  author={Xu, Binwei and Liang, Haoran and Liang, Ronghua and Chen, Peng},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
  volume={35},
  number={4},
  pages={3004--3012},
  year={2021}
}