Awesome
S3PRecon
The official implementation for the CVPR 2023 paper Self-Supervised Super-Plane for Neural 3D Reconstruction.
Installation and Setup
conda env create -f environment.yml
conda activate manhattan
Usage
Training
python train_net.py --cfg_file configs/scannet/0084_self_plane.yaml gpus 0, exp_name scannet_0084_self_plane
Evaluation
python run.py --type evaluate --cfg_file configs/scannet/0084_self_plane.yaml gpus 0, exp_name scannet_0084_self_plane
Mesh extraction
python run.py --type mesh_extract --output_mesh result.obj --cfg_file configs/scannet/0084_self_plane.yaml gpus 0, exp_name scannet_0084_self_plane
Acknowledgments
- Thanks for the ManhattanSDF, which helps us to quickly implement our ideas.
- neurecon
- PlanarReconstruction
Citation
If our work is useful for your research, please consider citing:
@inproceedings{ye2023s3p,
title={Self-Supervised Super-Plane for Neural 3D Reconstruction},
author={Ye, Botao and Liu, Sifei and Li, Xueting and Yang, Ming-Hsuan},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={21415--21424},
year={2023}
}