Awesome
SpaceNetUnet
This project is aimed to demonstrate how a deep learning model can be engineered and improoved.
It is based on SpaceNet Vegas data.
Baseline model is Unet like , it is inspired by this blog post.
Model engineering is in notebooks
dir
Example outputs are included in the examples directory
Baseline
Improoved model
Download SpaceNet Vegas data
It is implied that you have a valid AWS account and installed cli.
If you don't have cli you can download data from aws s3 public bucket.
aws s3api get-object --bucket spacenet-dataset \
--key AOIs/AOI_2_Vegas/misc/AOI_2_Vegas_Test_public.tar.gz \
--request-payer requester AOI_2_Vegas_Test_public.tar.gz
mkdir AOI_2_Vegas
tar -C AOI_2_Vegas -xf AOI_2_Vegas_Test_public.tar.gz AOI_2_Vegas
Download SpaceNet utilities and install requirements
https://github.com/SpaceNetChallenge/utilities/tree/master
pip install -r utilities/python/requirements.txt
Process geo files to images
python utilities/python/createDataSpaceNet.py 'AOI_2_Vegas' \
--srcImageryDirectory RGB-PanSharpen \
--outputDirectory 'AOI_2_Vegas_processed' \
--annotationType PASCALVOC2012 \
--imgSizePix 650 \
--outputFileType JPEG \
--convertTo8Bit
mkdir tiles
cp AOI_2_Vegas_processed/annotations/.*jpg AOI_2_Vegas_processed/annotations/.*segcls.tif' tiles
At this point you should have 3851 satellite images and 3851 corresponding building footprint masks.