Awesome
Crashwalk
Documentation
If you want to use import "github.com/bnagy/crashwalk"
in your own Go code, you
can get godoc at: http://godoc.org/github.com/bnagy/crashwalk
cwtriage
To run the standalone cwtriage tool:
cwtriage runs crashfiles with instrumentation and outputs results in various formats
Usage: cwtriage -root /path/to/afl-dir [-match pattern] -- /path/to/target -in @@ -out whatever
( @@ will be substituted for each crashfile )
-afl
Prefer the AFL recorded crashing command, if present
-engine string
Debugging engine to use: [gdb lldb] (default "gdb")
-every int
Run every n seconds (default -1)
-f string
Template filename to use while running crash
-ignore string
Directory skip pattern ( go regex syntax )
-match string
Match pattern for files ( go regex syntax )
-mem int
Memory limit for target processes (MB) (default -1)
-output string
Output format to use: [json pb text] (default "text")
-root string
Root directory to look for crashes
-seen
Include seen results from the DB in the output
-seendb string
Path to BoltDB (default "crashwalk.db")
-strict
Abort the whole run if any crashes fail to repro
-t int
Timeout for target processes (secs) (default 60)
-tidy
Move crashes that error under Run() to a tidy dir
-workers int
AFL Mode
If you're using AFL >= 1.50b then afl automatically records the command that was used in each crash dir ( in the README.txt file ). For most people, that means you can use the -afl switch to:
- Automatically set the -match pattern to match AFL crashfiles
- Automatically use the stored command from the README.txt in each crash directory
- Automatically set the same memory limit
- Automatically ignore queue/ and hang/ directories
- Automatically pick up
-f
template configuration from README.txt - Use the supplied command (if any) as a default
If you are in the directory that contains your individual fuzz workers, then the minimal command would be something like
cwtriage -root . -afl
NOTE See Bugs below!
Manual Mode
If you're triaging from an older version of AFL or you want to run the crashes with a different target command, then -match crashes.\*id
should match AFL crashes.
The tool creates a BoltDB (in the current directory, by default) that is used to cache crash instrumentation results. This way you can run it multiple times on an active directory and only get the latest crashes, or run it with -seen and get all crashes, but faster. To "reset the cache" just rm crashwalk.db
. NOTE that the cache DOES NOT contain the actual crashfile, only the metadata, so don't go deleting your crashes or anything.
Output Formats
Supported output formats are JSON, protocol buffers or the text summary seen in the examples below. JSON and protbuf output is one crash per line, to facilitate piping that output to another process - for example to push each crash to a queue, write them to a database etc.
Tidy
When you have crashfiles that don't repro under the debugger they are not added to the cwtriage
cache database, which means that cwtriage
will attempt to run then every time, even without -seen
. If you have a lot of these files, or if they're particularly slow (such a memory eaters and hangs) then they can add a lot of time to each run. By using the -tidy
flag, files that don't crash under the debugger will be moved to a directory called .cwtidy
inside the crash directory.
-f
If you have an app that expects a certain extension you can use the -f
option, with some limitations. Because we support multiple workers, you can't specify an exact output file. Any file you specify, like /dev/shm/blah.txt
will be used as a template, and each worker will copy the crashdata for each crash into a randomised 8 character name like /dev/shm/fjsyvnsh.txt
, cleaning up at the end.
NOTE -afl
mode will automatically do this for you if you used a -f
option to afl-fuzz
or afl-launch
, so you don't need to pass this option.
cwdump
cwdump
summarizes crashes in a crashwalk database by major / minor stack hash. Although AFL (for example) already de-dupes crashes, bucketing summarizes those crashes by an order of magnitude or more. Crashes that bucket the same have exactly the same stack contents, so they're likely (not guaranteed) to be the same bug.
Run cwtriage
as above and then do something like
cwdump ./crashwalk.db > triage.txt
cwfind
cwfind
is a simple utility to output the filenames of all crashes matching a given hash. I use it in combination with xargs
to bulk delete / move crashfiles.
$ cwfind a9060880abffbe2dcd5c9b4bb39c9233.0e358881a2545b216eee9aabe3723302
pdf-S3/crashes/id:000821,sig:08,src:019017+009441,op:splice,rep:16
pdf-S25/crashes/id:000823,sig:08,src:019101+013412,op:splice,rep:64
pdf-S17/crashes/id:000870,sig:08,src:025983+017873,op:splice,rep:8
pdf-S3/crashes/id:000822,sig:08,src:019017+009441,op:splice,rep:4
Installation
-
You should follow the instructions to install Go, if you haven't already done so.
-
(FOR LINUX ONLY) Install the 'exploitable' tool from here. Right now the code is expecting to find the tool at
~/src/exploitable/exploitable/exploitable.py
. If this is impossible, you can set the CW_EXPLOITABLE environment variable and it should get picked up. -
(FOR LINUX ONLY) Make sure you have gdb in your path with
which gdb
-
(FOR OSX ONLY) I wrote a very heavily modified mutant offspring of exploitable and one of the lldb sample tools, called
exploitaben.py
. Unless you do something unusual thecwtriage
binary will install it as a dependency and use it for-engine lldb
. You can check the lldb specific code here -
(FOR OSX ONLY) Make sure lldb is installed. You might need to mess about with assorted Xcode hijinks etc.
Now, install crashwalk:
$ go get -u github.com/bnagy/crashwalk/cmd/...
The binaries produced are statically linked (Go just does that), so you can 'deploy' to other systems, docker containers etc by just copying them.
No overarching tests yet, sorry, it's a little fiddly to build a standalone testbed. The gdb / lldb parsers will panic if they get confused and give you the problematic input and a useful stack trace. If the input is not sensitive, use that to open an issue and I'll fix it.
exploitaben
does have a reasonable set of tests, and you can check out the results. I suck at python so the diffing is not automatic. I included all of the exploitable project tests as well as all the CrashWrangler tests.
Screenshots
GDB Example - unique faulting EIPs
./cwtriage -afl -root . -workers 16 | grep =\> | sort | uniq -c
2015/02/19 00:58:20 Workers started
2015/02/19 01:06:51 All done!
1 => 0x00007ffff6184dfe: push r13
140 => 0x00007ffff6184e17: mov DWORD PTR [rbp-0x4e0],eax
75 => 0x00007ffff6184e7d: call 0x7ffff61cf5e0 <strchrnul>
3 => 0x00007ffff6184fa9: call 0x7ffff6189f90 <buffered_vfprintf>
1 => 0x00007ffff6189f92: push r12
129 => 0x00007ffff6189fc5: mov QWORD PTR [rsp+0x100],rbx
12 => 0x00007ffff6189fd8: mov DWORD PTR [rsp+0x20],0xfbad8004
1 => 0x00007ffff61b70da: push r13
5 => 0x00007ffff61b70de: push rbp
1 => 0x00007ffff61b71c4: call 0x7ffff61c8230 <__mempcpy_sse2>
GDB Example - summary output
---CRASH SUMMARY---
Filename: /dev/shm/crashexplore/fuzz3/crashes/id:000359,sig:11,src:001295,op:havoc,rep:16
SHA1: 30d6e81570a67cb32bbd51b460d74bb193a85d98
Classification: EXPLOITABLE
Hash: 2f50f8e5a6fb7a55669dc8ead34fdba3.ba6f36a1a8447da016a175a99706a64b
Command: /home/ben/src/poppler-0.26.5/utils/pdftocairo -jpeg /dev/shm/crashexplore/fuzz3/crashes/id:000359,sig:11,src:001295,op:havoc,rep:16
Faulting Frame:
fprintf @ 0x000000000044f7be: in /home/ben/src/poppler-0.26.5/utils/pdftocairo
Disassembly:
0x00007ffff6184e60: mov QWORD PTR [rbp-0x460],rax
0x00007ffff6184e67: mov rax,QWORD PTR [r15+0x8]
0x00007ffff6184e6b: mov QWORD PTR [rbp-0x458],rax
0x00007ffff6184e72: mov rax,QWORD PTR [r15+0x10]
0x00007ffff6184e76: mov QWORD PTR [rbp-0x450],rax
=> 0x00007ffff6184e7d: call 0x7ffff61cf5e0 <strchrnul>
0x00007ffff6184e82: and r12d,0x8000
0x00007ffff6184e89: mov QWORD PTR [rbp-0x4e8],rax
0x00007ffff6184e90: mov QWORD PTR [rbp-0x4d0],rax
0x00007ffff6184e97: mov DWORD PTR [rbp-0x4dc],0x0
Stack Head (1001 entries):
_IO_vfprintf_internal @ 0x00007ffff6184e7d: in /lib/x86_64-linux-gnu/libc-2.19.so (BL)
buffered_vfprintf @ 0x00007ffff618a021: in /lib/x86_64-linux-gnu/libc-2.19.so (BL)
_IO_vfprintf_internal @ 0x00007ffff6184fae: in /lib/x86_64-linux-gnu/libc-2.19.so (BL)
___fprintf_chk @ 0x00007ffff6245065: in /lib/x86_64-linux-gnu/libc-2.19.so (BL)
fprintf @ 0x000000000044f7be: in /home/ben/src/poppler-0.26.5/utils/pdftocairo
error @ 0x000000000044f7be: in /home/ben/src/poppler-0.26.5/utils/pdftocairo
Parser::getObj @ 0x0000000000569363: in /home/ben/src/poppler-0.26.5/utils/pdftocairo
Parser::getObj @ 0x0000000000568deb: in /home/ben/src/poppler-0.26.5/utils/pdftocairo
Parser::getObj @ 0x000000000056997b: in /home/ben/src/poppler-0.26.5/utils/pdftocairo
XRef::fetch @ 0x00000000005d2d01: in /home/ben/src/poppler-0.26.5/utils/pdftocairo
dictLookup @ 0x00000000005aa3a5: in /home/ben/src/poppler-0.26.5/utils/pdftocairo
Stream::addFilters @ 0x00000000005aa3a5: in /home/ben/src/poppler-0.26.5/utils/pdftocairo
Parser::makeStream @ 0x000000000056842e: in /home/ben/src/poppler-0.26.5/utils/pdftocairo
Parser::getObj @ 0x00000000005695d2: in /home/ben/src/poppler-0.26.5/utils/pdftocairo
Parser::getObj @ 0x000000000056997b: in /home/ben/src/poppler-0.26.5/utils/pdftocairo
Parser::getObj @ 0x000000000056997b: in /home/ben/src/poppler-0.26.5/utils/pdftocairo
Registers:
rax=0x00007fffff801ca0 rbx=0x00007fffff7ff560 rcx=0x00000000ffffffff rdx=0x00007fffff801c88
rsi=0x0000000000000025 rdi=0x000000000083976a rbp=0x00007fffff7ff530 rsp=0x00007fffff7fef50
r8=0x00007ffff64fb9f0 r9=0x0000000001f21e10 r10=0x000000000083976a r11=0x0000000000aa8000
r12=0x00000000fbad8004 r13=0x0000000000000024 r14=0x000000000083976a r15=0x00007fffff801c88
rip=0x00007ffff6184e7d efl=0x0000000000010246 cs=0x0000000000000033 ss=0x000000000000002b
ds=0x0000000000000000 es=0x0000000000000000 fs=0x0000000000000000 gs=0x0000000000000000
Extra Data:
Description: Access violation during branch instruction
Short description: BranchAv (4/22)
Explanation: The target crashed on a branch instruction, which may indicate that the control flow is tainted.
---END SUMMARY---
LLDB Example - summary output
For exploitaben
I used "indicators" instead of a single classification. I'm hoping that this is more flexible and better suited to post-crash database searches and such. They're in the Extra Data
field below, so that the crash summary protobufs are crossplatform.
---CRASH SUMMARY---
Filename: /Volumes/ramdisk/popplUNFIXED/crashes/id:000156,sig:06,src:006567,op:havoc,rep:16
SHA1: 53100e26a2eced52afa5a8f1708ced7a6dbb6435
Classification:
Hash: 8263c96a28b14639c338ffd408d3701e.0add20a3424f9105c8476367f36eb255
Command: /Users/ben/src/poppler-0.31.0/utils/pdftoppm -aa no -r 36 -png /Volumes/ramdisk/popplUNFIXED/crashes/id:000156,sig:06,src:006567,op:havoc,rep:16
Faulting Frame:
Catalog::getNumPages() [inlined] Object::dictIs(this=0x000a000000000007, dictType=<unavailable>) - 18446744069413943243 @ 0x000000010009c834: in pdftoppm
Disassembly:
=> 0x00007fff97580282: : 73 08 jae 0x7fff9758028c ; __pthread_kill + 20
0x00007fff97580284: : 48 89 c7 mov rdi, rax
0x00007fff97580287: : e9 17 ba ff ff jmp 0x7fff9757bca3 ; cerror_nocancel
0x00007fff9758028c: : c3 ret
0x00007fff9758028d: : 90 nop
0x00007fff9758028e: : 90 nop
0x00007fff9758028f: : 90 nop
0x00007fff97580290: : b8 4c 01 00 02 mov eax, 0x200014c
0x00007fff97580295: : 49 89 ca mov r10, rcx
0x00007fff97580298: : 0f 05 syscall
Stack Head (6 entries):
__pthread_kill + 10 @ 0x00007fff97580282: in libsystem_kernel.dylib
pthread_kill + 90 @ 0x00007fff8e3d54c3: in libsystem_pthread.dylib
abort + 129 @ 0x00007fff97a4cb73: in libsystem_c.dylib
Catalog::getNumPages() [i @ 0x000000010009c834: in pdftoppm
main(argc=2, argv=<unavai @ 0x0000000100002bb0: in pdftoppm
start + 1 @ 0x00007fff9a2f35c9: in libdyld.dylib
Registers:
rax=0x0000000000000000 rbx=0x0000000000000006 rcx=0x00007fff5fbffc88 rdx=0x0000000000000000
rdi=0x000000000000030b rsi=0x0000000000000006 rbp=0x00007fff5fbffcb0 rsp=0x00007fff5fbffc88
r8=0x0000000000000008 r9=0x0000000100800000 r10=0x0000000008000000 r11=0x0000000000000206
r12=0x00000001004a5200 r13=0x0000000000000000 r14=0x00007fff7cb27300 r15=0x0000000100a002a0
rip=0x00007fff97580282 rfl=0x0000000000000206 cs=0x0000000000000007 fs=0x0000000000000000
gs=0x0000000000000000
Extra Data:
StopDesc: signal SIGABRT
AvNearNull: False
AvNearSP: False
BadBeef: False
Access Type: <not an access violation>
Registers:
BlockMov: False
Weird PC: False
Weird SP: False
Suspicious Funcs:
Illegal Insn: False
Huge Stack: False
---END SUMMARY---
TODO
Add NSQ support. Add docker support. (j/k)
Bugs
For -afl
mode, README.txt files that do not contain a command separator (--
) are not parsed correctly. The best way to work around this issue is to use a separator if launching afl-fuzz
manually or to use afl-launch. Resolving this issue would mean emulating C getopt, which I am disinclined to spend time doing - patches welcome!
Contributing
Fork and send a pull request to contribute code.
Report issues.
License
BSD style, see LICENSE file for details.