Home

Awesome

Spring Boot with Observability

Observe the Spring Boot application with three pillars of observability on Grafana:

  1. Traces with Tempo and OpenTelemetry Instrumentation for Java
  2. Metrics with Prometheus, Spring Boot Actuator, and Micrometer
  3. Logs with Loki and Logback

Observability Architecture

This demo project is a Spring Boot version of FastAPI with Observability and is also inspired by Cloud Observability with Grafana and Spring Boot.

Table of contents

Quick Start

  1. Install Loki Docker Driver

    docker plugin install grafana/loki-docker-driver:2.9.2 --alias loki --grant-all-permissions
    
  2. Start all services with docker-compose

    docker-compose up -d
    
  3. Send requests with siege and curl to the Spring Boot app

    bash request-script.sh
    bash trace.sh
    

    Or you can send requests with k6:

    k6 run --vus 3 --duration 300s k6-script.js
    

    Or send requests from applications' Swagger UI:

  4. Check predefined dashboard Spring Boot Observability on Grafana http://localhost:3000/ and login with default account admin and password admin

    Dashboard screenshot:

    Spring Boot Monitoring Dashboard

    The dashboard is also available on Grafana Dashboards.

Explore with Grafana

Grafana provides a great solution, which could observe specific actions in service between traces, metrics, and logs through trace ID and exemplar.

Observability Correlations

Image Source: Grafana

Metrics to Traces

Get Trace ID from an exemplar in metrics, then query in Tempo.

Query with histogram_quantile(.99,sum(rate(http_server_requests_seconds_bucket{application="app-a", uri!="/actuator/prometheus"}[1m])) by(uri, le)) and turn on Exemplars in options.

Metrics to Traces

Traces to Logs

Get Trace ID and tags (here is compose.service) defined in Tempo data source from span, then query with Loki.

Traces to Logs

Logs to Traces

Get Trace ID from log (regex defined in Loki data source), then query in Tempo.

Logs to Traces

Detail

Spring Boot Application

For a more complex scenario, we use three Spring Boot applications with the same code in this demo. There is a cross-service action in /chain endpoint, which provides a good example of how OpenTelemetry Instrumentation work and how Grafana presents trace information.

OpenTelemetry Instrumentation

OpenTelemetry Instrumentation for Java provides a zero-code way to instrument the application by the agent jar as follows:

java -javaagent:path/to/opentelemetry-javaagent.jar -jar myapp.jar

The agent supports a lot of libraries, including Spring Web MVC. According to the document:

It can be used to capture telemetry data at the “edges” of an app or service, such as inbound requests, outbound HTTP calls, database calls, and so on.

So we don't need to modify any line of code in our codebase. The agent will handle everything automatically. In this project, we have three kinds of actions that could be captured by the agent:

  1. HTTP requests: capture HTTP information like request method, status, and so on.

    Span data of HTTP requests

  2. PostgreSQL actions(POST /peanuts and the first request of GET /peanuts/{id}): capture DB information like SQL statement, table name, and so on.

    Span data of PostgreSQL actions

  3. Redis commands(From the second request of GET /peanuts/{id}): capture Redis information like commands, keys, and so on.

    Span data of Redis commands

The configurations, like the exporter setting, are listed on the document, and are consumed by the agent from one or more of the following sources (ordered from highest to lowest priority):

In this demo project we use environment variables to set the agent configuration:

app-a:
  build: ./app/
  environment:
    - OTEL_EXPORTER_OTLP_ENDPOINT=http://tempo:4317
    - OTEL_SERVICE_NAME=app-a
    - OTEL_RESOURCE_ATTRIBUTES=compose_service=app-a
    - OTEL_METRICS_EXPORTER=none
  ports:
    - "8080:8080"

Or using a configuration file is another common way to set the agent:

# otel.properties
otel.exporter.otlp.endpoint=http://tempo:4317
otel.service.name=app-a
otel.resource.attributes=compose_service=app-a
otel.metrics.exporter=none
# set otel.javaagent.configuration-file with system properties
java -javaagent:path/to/opentelemetry-javaagent.jar \
     -Dotel.javaagent.configuration-file=path/to/otel.properties \
     -jar myapp.jar

More configuration details can be found on the official document.

Logs

OpenTelemetry Agent will add information to each logging automatically.

OpenTelemetry Agent injects the current span information into each logging event's MDC copy:

Logger MDC auto-instrumentation

In this demo project, we override logging.pattern.level in application.yaml file:

logging:
  pattern:
    level: "trace_id=%mdc{trace_id} span_id=%mdc{span_id} trace_flags=%mdc{trace_flags} %p"

The log would be like this:

2022-10-10 15:18:54.893 trace_id=605c7adf03bdb2f2917206de1eae8f72 span_id=c581b882e2d252c2 trace_flags=01 ERROR 1 --- [nio-8080-exec-6] com.example.app.AppApplication           : Hello World!!

Traces

As previously mentioned, OpenTelemetry Agent can capture telemetry data at the “edges” of an app or service, such as inbound requests, and outbound HTTP calls. We don't need to add anything to our code. To show this, we provide the /chain endpoint in the application as follows:

@GetMapping("/chain")
    public String chain(@RequestParam(value = "name", defaultValue = "World") String name) throws InterruptedException, IOException {
        String TARGET_ONE_HOST = System.getenv().getOrDefault("TARGET_ONE_HOST", "localhost");
        String TARGET_TWO_HOST = System.getenv().getOrDefault("TARGET_TWO_HOST", "localhost");
        logger.debug("chain is starting");
        Request.Get("http://localhost:8080/")
                .execute().returnContent();
        Request.Get(String.format("http://%s:8080/io_task", TARGET_ONE_HOST))
                .execute().returnContent();
        Request.Get(String.format("http://%s:8080/cpu_task", TARGET_TWO_HOST))
                .execute().returnContent();
        logger.debug("chain is finished");
        return "chain";
    }

When calling app-a chain endpoint(curl localhost:8080/chain), it will send requests to itself root(/) and the other two services' io_task, and cpu_task by order. In the whole process, we don't write any line of code about OpenTelemetry, trace, or span. But the log shows all inbound requests, and outbound HTTP calls were added span information as follows:

# Start from app-a chain
2022-10-10 15:57:12.828 trace_id=743ae05db90d00fd65998ff30cf7094d span_id=6cc84ac5ed4cf68c trace_flags=01 DEBUG 1 --- [nio-8080-exec-6] com.example.app.AppApplication           : chain is starting

# In app-a root
2022-10-10 15:57:13.106 trace_id=743ae05db90d00fd65998ff30cf7094d span_id=4745d1a1f588a949 trace_flags=01 ERROR 1 --- [nio-8080-exec-7] com.example.app.AppApplication           : [traceparent:"00-743ae05db90d00fd65998ff30cf7094d-d72a1422522ce837-01", host:"localhost:8080", connection:"Keep-Alive", user-agent:"Apache-HttpClient/4.5.13 (Java/1.8.0_342)", accept-encoding:"gzip,deflate"]
2022-10-10 15:57:13.106 trace_id=743ae05db90d00fd65998ff30cf7094d span_id=4745d1a1f588a949 trace_flags=01 ERROR 1 --- [nio-8080-exec-7] com.example.app.AppApplication           : Hello World!!
2022-10-10 15:57:13.106 trace_id=743ae05db90d00fd65998ff30cf7094d span_id=4745d1a1f588a949 trace_flags=01 DEBUG 1 --- [nio-8080-exec-7] com.example.app.AppApplication           : Debugging log
2022-10-10 15:57:13.106 trace_id=743ae05db90d00fd65998ff30cf7094d span_id=4745d1a1f588a949 trace_flags=01 INFO 1 --- [nio-8080-exec-7] com.example.app.AppApplication           : Info log
2022-10-10 15:57:13.106 trace_id=743ae05db90d00fd65998ff30cf7094d span_id=4745d1a1f588a949 trace_flags=01 WARN 1 --- [nio-8080-exec-7] com.example.app.AppApplication           : Hey, This is a warning!
2022-10-10 15:57:13.106 trace_id=743ae05db90d00fd65998ff30cf7094d span_id=4745d1a1f588a949 trace_flags=01 ERROR 1 --- [nio-8080-exec-7] com.example.app.AppApplication           : Oops! We have an Error. OK

# In app-b io_task
2022-10-10 15:57:14.141 trace_id=743ae05db90d00fd65998ff30cf7094d span_id=b97df0b1834ab84a trace_flags=01 INFO 1 --- [nio-8080-exec-4] com.example.app.AppApplication           : io_task

# In app-c cpu_task
2022-10-10 15:57:14.191 trace_id=743ae05db90d00fd65998ff30cf7094d span_id=7fd693eefc0d3387 trace_flags=01 INFO 1 --- [nio-8080-exec-4] com.example.app.AppApplication           : cpu_task

# Back to app-a chain
2022-10-10 15:57:14.199 trace_id=743ae05db90d00fd65998ff30cf7094d span_id=6cc84ac5ed4cf68c trace_flags=01 DEBUG 1 --- [nio-8080-exec-6] com.example.app.AppApplication           : chain is finished

Each endpoint got the same trace_id 743ae05db90d00fd65998ff30cf7094d start from app-a chain. The auto-injected traceparent(could saw in the first line in app-a root log) is how OpenTelemetry Agent passed through all these services.

Metrics

To get Prometheus metrics from the Spring Boot application, we need two dependencies:

  1. Spring Boot Actuator: Actuator provides a lot of monitoring features by HTTP or JMX endpoints for the Spring Boot applications.
  2. Micrometer: Micrometer provides a general API to collect metrics and transform the format for different monitoring systems, including Prometheus.

Add these two dependencies to the pom.xml and config to the application.yaml as follows:

<dependency>
   <groupId>org.springframework.boot</groupId>
   <artifactId>spring-boot-starter-actuator</artifactId>
</dependency>
<dependency>
   <groupId>io.micrometer</groupId>
   <artifactId>micrometer-registry-prometheus</artifactId>
</dependency>
management:
  endpoints:
    web:
      exposure:
        include: prometheus # only exposure /actuator/prometheus endpoint
  metrics:
    tags:
      application: app # add tag to each prometheus metric

The Prometheus metrics look like this on /actuator/prometheus:

# HELP executor_active_threads The approximate number of threads that are actively executing tasks
# TYPE executor_active_threads gauge
executor_active_threads{application="app",name="applicationTaskExecutor",} 0.0
...
 HELP http_server_requests_seconds Duration of HTTP server request handling
# TYPE http_server_requests_seconds summary
http_server_requests_seconds_count{application="app",exception="None",method="GET",outcome="SUCCESS",status="200",uri="/",} 1.0
http_server_requests_seconds_sum{application="app",exception="None",method="GET",outcome="SUCCESS",status="200",uri="/",} 0.047062542
http_server_requests_seconds_count{application="app",exception="None",method="GET",outcome="SUCCESS",status="200",uri="/actuator/prometheus",} 2.0
http_server_requests_seconds_sum{application="app",exception="None",method="GET",outcome="SUCCESS",status="200",uri="/actuator/prometheus",} 0.053801375
# HELP http_server_requests_seconds_max Duration of HTTP server request handling
# TYPE http_server_requests_seconds_max gauge
http_server_requests_seconds_max{application="app",exception="None",method="GET",outcome="SUCCESS",status="200",uri="/",} 0.047062542
http_server_requests_seconds_max{application="app",exception="None",method="GET",outcome="SUCCESS",status="200",uri="/actuator/prometheus",} 0.045745625
...
Metrics with Exemplar

Exemplar is a new datatype proposed in OpenMetrics. To enable the Exemplar feature there are some dependencies requirements:

  1. Spring Boot >= 2.7.0: Spring Boot supported Prometheus Exemplars since v2.7.0-RC1.
  2. Micrometer >= 1.10.0: Micrometer supported Exemplar for Prometheus Histogram and Prometheus Counter since 1.9.0 and using io.prometheus.simpleclient_common 0.16.0 since 1.10.0.

Additionally, we need to add an Exemplar Sampler (Source from qaware/cloud-observability-grafana-spring-boot) as follows:

package com.example.app;

import io.prometheus.client.exemplars.tracer.otel_agent.OpenTelemetryAgentSpanContextSupplier;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

@Configuration
public class PrometheusExemplarSamplerConfiguration {
    @Bean
    public OpenTelemetryAgentSpanContextSupplier openTelemetryAgentSpanContextSupplier() {
        // OpenTelemetryAgentSpanContextSupplier is from the opentelemetry agent jar, without using the agent will cause class not found error when running.
        return new OpenTelemetryAgentSpanContextSupplier();
    }
}

The discussion about Exemplar Sampler is in Exemplars support for Prometheus Histogram #2812 on the Micrometer repository.

When all dependencies are addressed. We can add a distribution metric to Prometheus metrics in the application.yaml.

management:
  metrics:
    distribution:
      percentiles-histogram:
        http:
          server:
            requests: 'true'

Check more options for distribution metrics on the Spring Boot document.

As previously mentioned, Exemplar is a new datatype proposed in OpenMetrics, and the default /actuator/prometheus provide metrics with Prometheus format. So we need to add some headers to get the metrics with OpenMetrics format as follows:

curl 'http://localhost:8080/actuator/prometheus' -i -X GET \
   -H 'Accept: application/openmetrics-text; version=1.0.0; charset=utf-8'

The histogram metrics with trace ID (starts with #) look like this:

# TYPE http_server_requests_seconds histogram
# HELP http_server_requests_seconds Duration of HTTP server request handling
http_server_requests_seconds_bucket{application="app",exception="None",method="GET",outcome="SUCCESS",status="200",uri="/",le="0.001"} 0.0
http_server_requests_seconds_bucket{application="app",exception="None",method="GET",outcome="SUCCESS",status="200",uri="/",le="0.001048576"} 0.0
http_server_requests_seconds_bucket{application="app",exception="None",method="GET",outcome="SUCCESS",status="200",uri="/",le="0.001398101"} 0.0
http_server_requests_seconds_bucket{application="app",exception="None",method="GET",outcome="SUCCESS",status="200",uri="/",le="0.001747626"} 0.0
http_server_requests_seconds_bucket{application="app",exception="None",method="GET",outcome="SUCCESS",status="200",uri="/",le="0.002097151"} 0.0
http_server_requests_seconds_bucket{application="app",exception="None",method="GET",outcome="SUCCESS",status="200",uri="/",le="0.002446676"} 0.0
http_server_requests_seconds_bucket{application="app",exception="None",method="GET",outcome="SUCCESS",status="200",uri="/",le="0.002796201"} 1.0 # {span_id="55255da260e873d9",trace_id="21933703cb442151b1cef583714eb42e"} 0.002745959 1665676383.654
http_server_requests_seconds_bucket{application="app",exception="None",method="GET",outcome="SUCCESS",status="200",uri="/",le="0.003145726"} 1.0
http_server_requests_seconds_bucket{application="app",exception="None",method="GET",outcome="SUCCESS",status="200",uri="/",le="0.003495251"} 2.0 # {span_id="81222a08c4f050fe",trace_id="eddcd9569d20b4aa48c06d3b905f32ea"} 0.003224625 1665676382.620

Prometheus - Metrics

Collects metrics from applications.

Prometheus Config

Define all Spring Boot applications metrics scrape jobs in etc/prometheus/prometheus.yml.

Prometheus will scrape OpenMetrics format metrics automatically, there is no need to add specific headers config when scraping from /actuator/prometheus.

...
scrape_configs:
  - job_name: 'app-a'
    scrape_interval: 5s
    metrics_path: "/actuator/prometheus"
    static_configs:
      - targets: ['app-a:8080']

  - job_name: 'app-b'
    scrape_interval: 5s
    metrics_path: "/actuator/prometheus"
    static_configs:
      - targets: ['app-b:8080']

  - job_name: 'app-c'
    scrape_interval: 5s
    metrics_path: "/actuator/prometheus"
    static_configs:
      - targets: ['app-c:8080']

Grafana Data Source

Add an Exemplars which uses the value of TraceID label to create a Tempo link.

Grafana data source setting example:

Data Source of Prometheus: Exemplars

Grafana data sources config example:

name: Prometheus
type: prometheus
typeName: Prometheus
access: proxy
url: http://prometheus:9090
password: ''
user: ''
database: ''
basicAuth: false
isDefault: true
jsonData:
exemplarTraceIdDestinations:
   - datasourceUid: tempo
      name: TraceID
httpMethod: POST
readOnly: false
editable: true

Tempo - Traces

Receives spans from applications.

Grafana Data Source

Trace to logs setting:

  1. Data source: target log source
  2. Tags: key of tags or process level attributes from the trace, which will be log query criteria if the key exists in the trace
  3. Map tag names: Convert existing key of tags or process level attributes from trace to another key, then used as log query criteria. Use this feature when the values of the trace tag and log label are identical but the keys are different.

Grafana data source setting example:

Data Source of Tempo: Trace to logs

Grafana data sources config example:

name: Tempo
type: tempo
typeName: Tempo
access: proxy
url: http://tempo
password: ''
user: ''
database: ''
basicAuth: false
isDefault: false
jsonData:
nodeGraph:
   enabled: true
tracesToLogs:
   datasourceUid: loki
   filterBySpanID: false
   filterByTraceID: true
   mapTagNamesEnabled: false
   tags:
      - compose_service
readOnly: false
editable: true

Loki - Logs

Collects logs with Loki Docker Driver from all services.

Loki Docker Driver

  1. Use YAML anchor and alias feature to set logging options for each service.
  2. Set Loki Docker Driver options
    1. loki-url: loki service endpoint
    2. loki-pipeline-stages: processes multiline log from Spring Boot application with multiline and regex stages (reference)
x-logging: &default-logging # anchor(&): 'default-logging' for defines a chunk of configuration
  driver: loki
  options:
    loki-url: 'http://localhost:3100/api/prom/push'
    loki-pipeline-stages: |
      - multiline:
          firstline: '^\d{4}-\d{2}-\d{2} \d{1,2}:\d{2}:\d{2}'
          max_wait_time: 3s
      - regex:
          expression: '^(?P<time>\d{4}-\d{2}-\d{2} \d{1,2}:\d{2}:\d{2},d{3}) (?P<message>(?s:.*))$$'
# Use $$ (double-dollar sign) when your configuration needs a literal dollar sign.

version: "3.4"

services:
   foo:
      image: foo
      logging: *default-logging # alias(*): refer to 'default-logging' chunk 

Grafana Data Source

Add a TraceID derived field to extract the trace id and create a Tempo link from the trace id.

Grafana data source setting example:

Data Source of Loki: Derived fields

Grafana data source config example:

name: Loki
type: loki
typeName: Loki
access: proxy
url: http://loki:3100
password: ''
user: ''
database: ''
basicAuth: false
isDefault: false
jsonData:
derivedFields:
   - datasourceUid: tempo
      matcherRegex: (?:trace_id)=(\w+)
      name: TraceID
      url: $${__value.raw}
      # Use $$ (double-dollar sign) when your configuration needs a literal dollar sign.
readOnly: false
editable: true

Grafana

  1. Add Prometheus, Tempo, and Loki to the data source with config file etc/grafana/datasource.yml.
  2. Load predefined dashboard with etc/dashboards.yaml and etc/dashboards/spring-boot-observability.json.
# grafana in docker-compose.yaml
grafana:
   image: grafana/grafana:10.4.2
   volumes:
      - ./etc/grafana/:/etc/grafana/provisioning/datasources # data sources
      - ./etc/dashboards.yaml:/etc/grafana/provisioning/dashboards/dashboards.yaml # dashboard setting
      - ./etc/dashboards:/etc/grafana/dashboards # dashboard json files directory

Reference

  1. Cloud Observability with Grafana and Spring Boot
  2. Exemplars support for Prometheus Histogram
  3. OpenTelemetry SDK Autoconfigure
  4. Java system properties and environment variables