Home

Awesome

Feel free to visit my homepage and awesome person re-id github page


Hi-CMD: Hierarchical Cross-Modality Disentanglement for Visible-Infrared Person Re-Identification [CVPR2020 paper]


Presentation video

1-minute version (ENG)

Video Label

5-minute version (KOR)

Video Label


<Illustration of our Hierarchical Cross-Modality Disentanglement (Hi-CMD) concept>

<img src='concept.PNG' width='650'>

Prerequisites

Getting Started

Installation

conda create -n env_name python=3.6
source activate env_name
conda install pytorch torchvision cudatoolkit=10.0 -c pytorch
conda install -c conda-forge matplotlib
conda install -c anaconda yaml
conda install -c anaconda pyyaml 
conda install -c anaconda scipy
conda install -c anaconda pandas 
conda install -c anaconda scikit-learn 
conda install -c conda-forge opencv
conda install -c anaconda seaborn
conda install -c conda-forge tqdm
git clone https://github.com/Cadene/pretrained-models.pytorch.git
cd pretrained-models.pytorch
python setup.py install

Training and testing

Training

sh train.sh

Testing on pretrained model

1) RegDB_01 [1,2]

sh test.sh
MetricValue
Rank170.44%
Rank579.37%
Rank1085.15%
Rank2091.55%
mAP65.93%

2) SYSU-MM01 [3]

MetricValue
Rank134.94%
Rank565.48%
Rank1077.58%
Rank2088.38%
mAP35.94%

(Optional) If all the files can not downloaded in the above links, please check the below links.

(Optional) Additional experiments

Acknowledgement

The code is based on the PyTorch implementation of the Person_reID_baseline_pytorch, Cross-Model-Re-ID-baseline, MUNIT, DGNET, SYSU-evaluation.

Citation

@InProceedings{Choi_2020_CVPR,
author = {Choi, Seokeon and Lee, Sumin and Kim, Youngeun and Kim, Taekyung and Kim, Changick},
title = {Hi-CMD: Hierarchical Cross-Modality Disentanglement for Visible-Infrared Person Re-Identification},
booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2020}
}

Reference