Awesome
Indrop-Flow
Indrops analysis pipeline at BioCore@CRG
The pipeline is based on the DropEST tool: https://github.com/hms-dbmi/dropEst
Installing
- install docker or singularity.
- git clone https://github.com/biocorecrg/indrop.git; cd indrop
- sh INSTALL.sh for checking Nextflow and installing bioNextflow
Running the pipeline
The parameters are listed when using nextflow run indrop.nf --help
command.
nextflow run indrop.nf --help
N E X T F L O W ~ version 19.07.0
Launching `indrop.nf` [gigantic_ride] - revision: 17bd0ef49f
╔╗ ┬┌─┐┌─┐┌─┐┬─┐┌─┐╔═╗╦═╗╔═╗ ┬┌┐┌┌┬┐┬─┐┌─┐┌─┐╔═╗╔═╗╔═╗
╠╩╗││ ││ │ │├┬┘├┤ ║ ╠╦╝║ ╦ ││││ ││├┬┘│ │├─┘╚═╗║╣ ║═╬╗
╚═╝┴└─┘└─┘└─┘┴└─└─┘╚═╝╩╚═╚═╝ ┴┘└┘─┴┘┴└─└─┘┴ ╚═╝╚═╝╚═╝╚
====================================================
BIOCORE@CRG indropSEQ - N F ~ version 1.0
====================================================
pairs : {PATH}/*R{1,2,3,4}.fastq.gz
genome : {PATH}/anno/test.fa.gz
annotation : {PATH}/anno/gencode.v28.annotation.gtf
config : {PATH}/conf/indrop_v3.xml
barcode_list : {PATH}/conf/indrop_v3_barcodes.txt
email : yourmail@yourdomain
mtgenes : {PATH}/anno/mitoc_genes.txt
version : 3_4
library_tag : AGATATAA
output (output folder) : output_v3
You can change them either by using the command line:
nextflow run indrop.nf --pairs "data/{1,2}.fastq.gz" --version 1-2 > log
or changing the params.file You can use the nextflow options for sending the execution in background (-bg) or resuming a failed one (-resume).
nextflow run indrop.nf --pairs "data/{1,2}.fastq.gz" --version 1-2 -bg -resume > log
Indrop versions v1, v2 and v3 are supported
Version 1 and 2
Parameter version: "V1-2"
- File 1: barcode reads. Structure:
- Cell barcode, part 1
- Spacer
- Cell barcode, part 2
- UMI
- File 2: gene reads
Version 3
Parameter version: "V3_3"
- File 1: cell barcode
- File 2:
- cell barcode
- UMI
- File 3: gene read
Parameter version: "V3_4"
- File 1: cell barcode
- File 2:
- cell barcode
- UMI
- File 3: gene read
- File 4: library_tag
The parameter library_tag is only needed with version V3_4
Parameters
- Parameters are specified within the params.config file
The pipeline
- QC: Run FastQC on raw reads. It stores the results within QC folder.
- Indexing: It makes the index of the genome by using STAR.
- dropTag: It creates a "tagged" fastq file with information about the single cell that originated that read in the header.
- Alignment: It aligns tagged reads to the indexed genome by using STAR. Reasults are stored in Alignments folder.
- dropEst: It provides the estimation of read counts per gene per single cell. The results are in Estimated_counts folder and consists of an R data object, a file with a list of cells (aka barcode combinations), another with a list of genes and a matrix in Matrix Market format (https://en.wikipedia.org/wiki/Matrix_Market_exchange_formats).
- dropReport: It reads the R data oject produced by the dropEst step to produce a quality report. It needs a list of mitochondrial genes.
- multiQC: It wraps the QC from fastQC and STAR mapping in a single output.