Home

Awesome

Awesome Object Placement Awesome

A curated list of resources including papers, datasets, and relevant links pertaining to object placement, which aims to learn plausible spatial transformation (e.g., shifting, scaling, affine transformation, perspective transformation) for the inserted foreground object in a composite image considering geometric and semantic information. The simplest case is finding reasonable location and scale for the foreground object. For more complete resources on general image composition, please refer to Awesome-Image-Composition.

We can define three levels of tasks for object placement. (1) Level 1: given a composite image, verify whether the foreground placement is reasonable. (2) Level 2: given a pair of foreground and background, generate one composite image with reasonable foreground placement. (3) Level 3: given a pair of foreground and background, generate all composite images with reasonable foreground placement.

<p align='center'> <img src='./figures/task.jpg' width=70% /> </p>

Contributing

Contributions are welcome. If you wish to contribute, feel free to send a pull request. If you have suggestions for new sections to be included, please raise an issue and discuss before sending a pull request.

Table of Contents

Survey

A brief review on object placement is included in the following survey on image composition:

Li Niu, Wenyan Cong, Liu Liu, Yan Hong, Bo Zhang, Jing Liang, Liqing Zhang: "Making Images Real Again: A Comprehensive Survey on Deep Image Composition." arXiv preprint arXiv:2106.14490 (2021). [arXiv] [slides]

Online Demo

Try this online demo for object placement and have fun! hot

Papers

1. Instance-specific: predict transformation parameters given a pair of foreground and background

1.1 Generative Methods
1.2 Discriminative Methods

2. Category-specific: predict bounding boxes for certain categories given a background

2.1 Generative Methods
2.2 Discriminative Methods

Datasets

Related Topics

Out-of-Context Object

Other Resources