Awesome
Deep Virtual Try-on with Clothes Transform
Source code for paper "Deep Virtual Try-on with Clothes Transform" <img height="300" src="https://github.com/b01902041/Deep-Virtual-Try-on-with-Clothes-Transform/blob/master/readme_img/introduction.png">
Overall Architecture
<img height="500" src="https://github.com/b01902041/Deep-Virtual-Try-on-with-Clothes-Transform/blob/master/readme_img/All.png">Dependencies
Install dependencies using pip.
pip install -r requirements.txt
Step1: CAGAN
<img height="200" src="https://github.com/b01902041/Deep-Virtual-Try-on-with-Clothes-Transform/blob/master/readme_img/CAGAN.png">code and data
- Training:
CAGAN.py
python CAGAN.py
- Testing:
Testing_with_fixed_data.py
python Testing_with_fixed_data.py
- Data:
MVC_image_pairs_resize_new.zip
parameters in code
Training: CAGAN.py
- Data should be put in
"./MVC_image_pairs_resize_new/1/*.jpg"
(for person images)
"./MVC_image_pairs_resize_new/5/*.jpg"
(for clothes images)
470: data = "data folder name"
471: train_A = "person images folder name"
473: filenames_1 = "person images folder name"
474: filenames_5 = "clothes images folder name"
617, 618: set "save model path"
Testing: Testing_with_fixed_data.py
- Data should be put in
"./MVC_image_pairs_resize_new/1/*.jpg"
(for person images)
"./MVC_image_pairs_resize_new/5_test/*.jpg"
(for clothes images)
215: set "model path"
220: data = "data folder name"
221: train_A = "person images folder name"
222: filenames_5 = "clothes images folder name"
224: out_root_dir = "output folder name"
225: origin_dir = "save input person images"
226: target_dir = "save target clothes images"
227: output_dir = "save output images"
228: mask_dir = "save output masks"
230: testing_number = "how much data you want to test"
Step2: Segmentation
<img height="200" src="https://github.com/b01902041/Deep-Virtual-Try-on-with-Clothes-Transform/blob/master/readme_img/segmentation.png">code
https://github.com/Engineering-Course/LIP_SSL
-
Modify mask:
modify_mask.m
-
Save the masks file to png file:
show.m
-
Combine all the masks:
combine_with_CAGANmask.m
Step3: Transform
<img height="100" src="https://github.com/b01902041/Deep-Virtual-Try-on-with-Clothes-Transform/blob/master/readme_img/warping.png">code and data
- Training:
unet.py
data.py
python unet.py
- Testing:
Testing_unet.py
python Testing_unet.py
- Data:
transform_data.zip
transform_test_data.zip
parameters in code
Training: unet.py
336: model_dir = "save model path"
337: result_dir = "save results path"
223: set "loss type"
data.py
15: set "data path"
Testing: Testing_unet.py
16: test_data_path = "data path"
17: test_img_folder = "target clothes image folder name"
18: test_mask_folder = "mask folder name"
19: model_name = "model name"
20: result_dir = "save results path"
Step4: Combination
<img height="200" src="https://github.com/b01902041/Deep-Virtual-Try-on-with-Clothes-Transform/blob/master/readme_img/combine.png">code
Combine_image.m