Awesome
HW-GPT-Bench
Repository for HW-GPT-Bench- NeurIPS DBT 2024
Note: We are in the process of updating the benchmark and code, with significant changes to the repository coming soon!
Supernet Checkpoints and Pretrained Surrogates
We release the pretrained supernet checkpoints here, the pretrained hardware surrogates here and the perplexity surrogates here and the list of architectures sampled here.
To install in editable mode (-e) run:
$ git clone https://github.com/automl/HW-Aware-LLM-Bench
$ cd HW-Aware-LLM-Bench
$ pip install -e .
Example api usage
from hwgpt.api import HWGPT
api = HWGPT(search_space="s",use_supernet_surrogate=False) # initialize API
random_arch = api.sample_arch() # sample random arch
api.set_arch(random_arch) # set arch
results = api.query() # query all for the sampled arch
print("Results: ", results)
energy = api.query(metric="energies") # query energy
print("Energy: ", energy)
rtx2080 = api.query(device="rtx2080") # query device
print("RTX2080: ", rtx2080)
# query perplexity based on mlp predictor
perplexity_mlp = api.query(metric="perplexity",predictor="mlp")
print("Perplexity MLP: ", perplexity_mlp)
Citation
If you find HW-GPT Bench useful, you can cite us using:
@article{sukthanker2024hw,
title={HW-GPT-Bench: Hardware-Aware Architecture Benchmark for Language Models},
author={Sukthanker, Rhea Sanjay and Zela, Arber and Staffler, Benedikt and Klein, Aaron and Franke, Jorg KH and Hutter, Frank},
journal={arXiv preprint arXiv:2405.10299},
year={2024}
}