Awesome
<div align="center">A Broad Study on the Transferability of Visual Representations with Contrastive Learning
</div>This repository contains code for the paper: A Broad Study on the Transferability of Visual Representations with Contrastive Learning
Prerequisites
- PyTorch 1.7
- pytorch-lightning 1.1.5
Install the required dependencies by:
pip install -r environments/requirements.txt
How to Run
Download Datasets
The data should be located in ~/datasets/cdfsl
folder. To download all the datasets:
bash data_loader/download.sh
Training
python main.py --system ${system} --dataset ${train_dataset} --gpus -1 --model resnet50
where system
is one of base_finetune
(ce), moco
(SelfSupCon), moco_mit
(SupCon), base_plus_moco
(CE+SelfSupCon), or supervised_mean2
(SupCon+SelfSupCon).
To know more about the cli arguments, see configs.py
.
You can also run the training script by bash scripts/run_linear_bn.sh -m train
.
Evaluation
Linear evaluation
python main.py --system linear_eval \
--train_aug true --val_aug false \
--dataset ${val_data}_train --val_dataset ${val_data}_test \
--ckpt ${ckpt} --load_base --batch_size ${bs} \
--lr ${lr} --optim_wd ${wd} --linear_bn --linear_bn_affine false \
--scheduler step --step_lr_milestones ${_milestones}
You can also run the evaluation script by bash scripts/run_linear_bn.sh -m tune
to hyper-parameter tune, and then bash scripts/run_linear_bn.sh -m test
to do linear-evaluation on the optimal hyper-parameter.
Few-shot
python main.py --system few_shot \
--val_dataset ${val_data} \
--load_base --test --model ${model} \
--ckpt ${ckpt} --num_workers 4
You can also run the evaluation script by bash scripts/run_fewshot.sh
.
Full-network finetuning
python main.py --system linear_transfer \
--dataset ${val_data}_train --val_dataset ${val_data}_test \
--ckpt ${ckpt} --load_base \
--batch_size ${bs} --lr ${lr} --optim_wd ${wd} \
--scheduler step --step_lr_milestones ${_milestones} \
--linear_bn --linear_bn_affine false \
--max_epochs ${max_epochs}
You can also run the evaluation script by bash scripts/run_transfer_bn.sh -m tune
to hyper-parameter tune, and then bash scripts/run_transfer_bn.sh -m test
to do linear-evaluation on the optimal hyper-parameter.
Pretrained models
You can also convert our pretrained checkpoint into torchvision resnet style checkpoint by python utils/convert_to_torchvision_resnet.py -i [input ckpt] -o [output path]
Citation
If you find this repo useful for your research, please consider citing the paper:
@inproceedings{islam2021broad,
title={A broad study on the transferability of visual representations with contrastive learning},
author={Islam, Ashraful and Chen, Chun-Fu Richard and Panda, Rameswar and Karlinsky, Leonid and Radke, Richard and Feris, Rogerio},
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
pages={8845--8855},
year={2021}
}