Home

Awesome

Awesome Transfer Learning

A list of awesome papers and cool resources on transfer learning, domain adaptation and domain-to-domain translation in general! As you will notice, this list is currently mostly focused on domain adaptation (DA) and domain-to-domain translation, but don't hesitate to suggest resources in other subfields of transfer learning.

Note: this list is not actively maintained anymore, but I still accept pull requests, so please don't hesitate if you want to contribute with newer resources

Table of Contents

Tutorials and Blogs

Papers

Papers are ordered by theme and inside each theme by publication date (submission date for arXiv papers). If the network or algorithm is given a name in a paper, this one is written in bold before the paper's name.

Surveys

Deep Transfer Learning

Transfer of deep learning models.

Fine-tuning approach

Feature extraction (embedding) approach

Multi-task learning

Policy transfer for RL

Few-shot transfer learning

Meta transfer learning

Applications

Medical imaging:

Robotics

Anomaly Detection

Unsupervised Domain Adaptation

Transfer between a source and a target domain. In unsupervised domain adaptation, only the source domain can have labels.

Theory

General

Multi-source

Adversarial methods

Learning a latent space

Image-to-Image translation

Multi-source adaptation

Temporal models (videos)

Optimal Transport

Embedding methods

Kernel methods

Autoencoder approach

Subspace Learning

Self-Ensembling methods

Other

Semi-supervised Domain Adaptation

All the source points are labelled, but only few target points are.

General methods

Subspace learning

Copulas methods

Few-shot Supervised Domain Adaptation

Only a few target examples are available, but they are labelled

Adversarial methods

Embedding methods

Applied Domain Adaptation

Domain adaptation applied to other fields

Physics

Audio Processing

Datasets

Image-to-image

Text-to-text

Other

Results

The results are indicated as the prediction accuracy (in %) in the target domain after adapting the source to the target. For the moment, they only correspond to the results given in the original papers, so the methodology may vary between each paper and these results must be taken with a grain of salt.

Digits transfer (unsupervised)

Source<br>TargetMNIST<br>MNIST-MSynth<br>SVHNMNIST<br>SVHNSVHN<br>MNISTMNIST<br>USPSUSPS<br>MNIST
SA56.9086.44?59.32??
DANN76.6691.09?73.85??
iDANN96.6791.9536.4984.50??
CoGAN????91.289.1
DRCN??40.0581.9791.8073.67
DSN83.291.2?82.7??
DTN??90.6679.72??
PixelDA98.2???95.9?
ADDA???76.089.490.1
UNIT???90.5395.9793.58
GenToAdapt???92.495.390.8
SBADA-GAN99.4?61.176.197.695.0
DA<sub>assoc</sub>89.4791.86?97.60??
CyCADA???90.495.696.5
I2I???92.195.192.2
DIRT-T98.7?76.599.4??
DeepJDOT92.4??96.795.796.4
DTA???99.499.599.1
LSTNet????97.6197.01

Challenges

Libraries

Books