Awesome
Elsa: Energy-based Learning forSemi-supervised Anomaly Detection
Official PyTorch implementation of "Elsa: Energy-based Learning forSemi-supervised Anomaly Detection" (BMVC 2021) by Sungwon Han*, Hyeonho Song*, Seungeon Lee, Sungwon Park, Meeyoung Cha.
Requirements
Environment
- python == 3.7
- torch == 1.7.1
- torchvision == 0.8.2
- CUDA == 10.1
- scikit-learn == 0.23.2
- tensorboard == 2.4.0
- tensorboardX == 2.4
- torchlars == 0.1.2
- diffdist == 0.1
- soyclustering == 0.2.0
Pretraining
Please refer following repositories for original codes.
simCLR: https://github.com/google-research/simclr
CSI: https://github.com/alinlab/CSI
To pretrain simCLR or CSI on CIFAR-10, try the following commands.
cd elsa_finetune
simCLR (ELSA)
python train.py --dataset cifar10 --model resnet18 \
--mode simclr --one_class_idx 0 --ratio_pollution 0.1 \
--batch_size 512 --epochs 1000 --single_device 0
mv ./logs0/cifar10_resnet18_unsup_simclr_one_class_0 ../pretrained_result
CSI (ELSA++)
python train.py --dataset cifar10 --model resnet18 \
--mode simclr_CSI --one_class_idx 0 --ratio_pollution 0.1 \
--batch_size 128 --epochs 1000 --shift_trans_type rotation --single_device 0
mv ./logs0/cifar10_resnet18_unsup_simclr_CSI_shift_rotation_one_class_0 ../pretrained_result
FineTuning
To pretrain the model on CIFAR-10, try the following commands.
- ELSA uses pretrained model of simclr and ELSA++ uses pretrained model of simclr_CSI.
- Argument "known_normal" and "ratio_pollution" of finetuning must be same to "one_class_idx" and "ratio_pollution" in pretraining.
ELSA
python ELSA.py --save_dir ./ --load_path ../pretrained_result/last.model \
--n_known_outlier 1 --known_normal 0 --known_outlier 1 \
--ratio_known_normal 0.1 --ratio_known_outlier 0.1 --ratio_pollution 0.1 \
--batch_size 64 --n_cluster 50 --optimizer adam --lr 1e-4 --weight_decay 0.0 --n_epochs 50
ELSA++
python ELSApp.py --save_dir ./ --load_path ../pretrained_result/last.model \
--n_known_outlier 1 --known_normal 0 --known_outlier 1 \
--ratio_known_normal 0.1 --ratio_known_outlier 0.1 --ratio_pollution 0.1 \
--batch_size 64 --n_cluster 50 --optimizer adam --lr 1e-4 --weight_decay 0.0 --n_epochs 50
License
Distributed under the MIT License. See LICENSE.txt for more information.