Home

Awesome

Deep learning models for traffic prediction

This is a summary for deep learning models with open code for traffic prediction.

These models are classified based on the following tasks.

TaskModelPaperCodePublication
Traffic flow predictionST-ResNetDeep Spatio-Temporal Residual Networks for Citywide Crowd Flows PredictiontfPytorchKerasAAAI2017/A
ACFMACFM: A Dynamic Spatial-Temporal Network for Traffic PredictionPytorchACM MM2018/A
STDNRevisiting spatial-temporal similarity: A deep learning framework for traffic predictionKerasAAAI2019/A
ASTGCNAttention based spatial-temporal graph convolutional networks for traffic flow forecastingPytorchAAAI2019/A
ST-MetaNetUrban traffic prediction from spatio-temporal data using deep meta learningMXNetKDD2019/A
STSGCNSpatial-Temporal Synchronous Graph Convolutional Networks: A New Framework for Spatial-Temporal Network Data ForecastingMXNetAAAI2020/A
STGNNSTGNN: Traffic Flow Prediction via Spatial Temporal Graph Neural NetworkPytorchWWW2020/A
AGCRNAdaptive Graph Convolutional Recurrent Network for Traffic ForecastingPytorchNIPS2020/A
DSANPreserving Dynamic Attention for Long-Term Spatial-Temporal Predictiontf2KDD2020/A
MPGCNPredicting Origin-Destination Flow via Multi-Perspective Graph Convolutional NetworkPytorchICDE2020/A
ST-GDNTraffic Flow Forecasting with Spatial-Temporal Graph Diffusion NetworktfAAAI2021/A
TrGNNTraffic Flow Prediction with Vehicle TrajectoriesPytorchAAAI2021/A
STFGNNSpatial-Temporal Fusion Graph Neural Networks for Traffic Flow ForecastingMXNetAAAI2021/A
STGODESTGODE : Spatial-Temporal Graph ODE Networks for Traffic Flow ForecastingPytorchKDD2021/A
ASTGNNLearning Dynamics and Heterogeneity of Spatial-Temporal Graph Data for Traffic ForecastingPytorchTKDE2021/A
STG-NCDEGraph Neural Controlled Differential Equations for Traffic ForecastingPytorchAAAI2022/A
STDENSTDEN Towards Physics-Guided Neural Networks for Traffic Flow PredictionPytorchAAAI2022/A
SAETraffic Flow Prediction With Big Data: A Deep Learning ApproachKerasTITS2015/B
STNNSpatio-Temporal Neural Networks for Space-Time Series Forecasting and Relations DiscoveryPytorchICDM2017/B
ST-3DNetDeep Spatial–Temporal 3D Convolutional Neural Networks for Traffic Data ForecastingKerasTITS2019/B
STAG-GCNSpatiotemporal Adaptive Gated Graph Convolution Network for Urban Traffic Flow ForecastingPytorchCIKM2020/B
ST-CGASpatial-Temporal Convolutional Graph Attention Networks for Citywide Traffic Flow ForecastingKerasCIKM2020/B
ResLSTMDeep Learning Architecture for Short-Term Passenger Flow Forecasting in Urban Rail TransitKerasTITS2020/B
DGCNDynamic Graph Convolution Network for Traffic Forecasting Based on Latent Network of Laplace Matrix EstimationPytorchTITS2020/B
ToGCNTopological Graph Convolutional Network-Based Urban Traffic Flow and Density PredictionPytorchTITS2020/B
Multi-STGCnetMulti-STGCnet: A Graph Convolution Based Spatial-Temporal Framework for Subway Passenger Flow ForecastingKerasIJCNN2020/C
Conv-GCNMulti-Graph Convolutional Network for Short-Term Passenger Flow Forecasting in Urban Rail TransitKerasIET-ITS2020/C
TCC-LSTM-LSMA temporal-aware LSTM enhanced by loss-switch mechanism for traffic flow forecastingKerasNeurocomputing2021/C
LSTM/GRUUsing LSTM and GRU neural network methods for traffic flow predictionKerasYAC2016/none
Cluster_LSTMForeseeing Congestion using LSTM on Urban Traffic Flow ClustersKerasICSAI2019/none
CRANNA Spatio-Temporal Spot-Forecasting Framework forUrban Traffic PredictionPytorchApplied Soft Computing2020/none
GNN-flowLearning Mobility Flows from Urban Features with Spatial Interaction Models and Neural NetworksPytorchIEEE SMARTCOMP2020/none
Deep_Sedanion_NetworkTraffic flow prediction using Deep Sedenion NetworksPytorcharXiv2020
MATGCNMulti-Attention Temporal Graph Convolution Network for Traffic Flow ForecastingPytorch本科毕设
Traffic speed predictionDCRNNDiffusion convolutional recurrent neural network: Data-driven traffic forecastingtfPytorchICLR2018/none
STGCNSpatio-temporal graph convolutional networks: A deep learning framework for traffic forecastingtfMXNetPytorchKerasIJCAI2018/A
BaiduTrafficDeep sequence learning with auxiliary information for traffic predictiontfKDD2018/A
Graph WaveNetGraph wavenet for deep spatial-temporal graph modelingPytorchIJCAI2019/A
Graph WaveNet-V2Incrementally Improving Graph WaveNet Performance on Traffic PredictionPytorcharXiv2019/none
GMANGman: A graph multi-attention network for traffic predictiontfAAAI2020/A
MRA-BGCNMulti-Range Attentive Bicomponent Graph Convolutional Network for Traffic ForecastingPytorchAAAI2020/A
MTGNNConnecting the Dots: Multivariate Time Series Forecasting with Graph Neural NetworksPytorchKDD2020/A
Curb-GANCurb-GAN: Conditional Urban Traffic Estimation through Spatio-Temporal Generative Adversarial NetworksPytorchKDD2020/A
AFStochastic origin-destination matrix forecasting using dual-stage graph convolutional, recurrent neural networkstfICDE2020/A
FC-GAGAFC-GAGA: Fully Connected Gated Graph Architecture for Spatio-Temporal Traffic ForecastingtfAAAI2021/A
HGCNHierarchical Graph Convolution Networks for Traffic ForecastingPytorchAAAI2021/A
ST-NormST-Norm: Spatial and Temporal Normalization for Multi-variateTime Series ForecastingPytorchKDD2021/A
DMSTGCNDynamic and Multi-faceted Spatio-temporal Deep Learning for Traffic Speed ForecastingPytorchKDD2021/A
GTSDiscrete Graph Structure Learning for Forecasting Multiple Time SeriesPytorchICLR2021/none
DKFNGraph Convolutional Networks with Kalman Filtering for Traffic PredictionPytorchSIGSPATIAL2020/none
T-GCNT-gcn: A temporal graph convolutional network for traffic predictiontfTITS2019/B
TGC-LSTMTraffic graph convolutional recurrent neural network: A deep learning framework for network-scale traffic learning and forecastingPytorchTITS2020/B
ST-GRATST-GRAT: A Novel Spatio-temporal Graph Attention Network for Accurately Forecasting Dynamically Changing Road SpeedPytorchCIKM2020/B
GaANGaAN: Gated Attention Networks for Learning on Large and Spatiotemporal GraphsMXNetUAI2018/B
TL-DCRNNTransfer Learning with Graph Neural Networks for Short-Term Highway Traffic ForecastingtfICPR2020/C
ST-MGATST-MGAT: Spatial-Temporal Multi-Head Graph Attention Networks for Traffic ForecastingPytorchICTAI2020/C
DGFNDynamic Graph Filters Networks: A Gray-box Model for Multistep Traffic Forecastingtf2ITSC2020/none
ATDMOn the Inclusion of Spatial Information for Spatio-Temporal Neural NetworksPytorcharXiv2020/none
STTNSpatial-Temporal Transformer Networks for Traffic Flow ForecastingPytorcharXiv2020/none
DGCRNDynamic Graph Convolutional Recurrent Network for Traffic Prediction Benchmark and SolutionPytorcharXiv2021/none
STAWnetSpatial-temporal attention wavenet: A deep learning framework for traffic prediction considering spatial-temporal dependenciesPytorchIET Intelligent Transport Systems2021/C
On-Demand service predictionDMVST-NetDeep Multi-View Spatial-Temporal Network for Taxi Demand PredictionKerasAAAI2018/A
STG2SeqStg2seq: Spatial-temporal graph to sequence model for multi-step passenger demand forecastingtfIJCAL2019/A
GEMLOrigin-Destination Matrix Prediction via Graph Convolution: a New Perspective of Passenger Demand ModelingKerasKDD2019/A
CCRNNCoupled Layer-wise Graph Convolution for Transportation Demand PredictionPytorchAAAI2021/A
CSTNContextualized Spatial–Temporal Network for Taxi Origin-Destination Demand PredictionKerasTITS2019/B
GraphLSTMGrids versus graphs: Partitioning space for improved taxi demand-supply forecastsPytorchTITS2020/B
DPFEEstimating multi-year 24/7 origin-destination demand using high-granular multi-source traffic dataPytorchTransportation Research Part C: Emerging Technologies2018/none
ST-ED-RMGCPredicting origin-destination ride-sourcing demand with a spatio-temporal encoder-decoder residual multi-graph convolutional networkKerasTransportation Research Part C: Emerging Technologies2021/none
Travel time predictionDeepTTEWhen will you arrive? estimating travel time based on deep neural networksPytorchAAAI2018/A
HetETAHetETA: Heterogeneous Information Network Embedding for Estimating Time of ArrivaltfKDD2020/A
TTPNetTTPNet: A Neural Network for Travel Time Prediction Based on Tensor Decomposition and Graph EmbeddingPytorchTKDE2020/A
HyperETAHyperETA: An Estimated Time of Arrival Method based on Hypercube ClusteringPytorchtechrxiv2021/None
GSTAGSTA: gated spatial–temporal attention approach for travel time predictiontf2Neural Computing and Applications2021/None
Traffic accident predictionRiskOracleRiskOracle: A Minute-Level Citywide Traffic Accident Forecasting FrameworktfAAAI2020/A
RiskSeqForesee Urban Sparse Traffic Accidents: A Spatiotemporal Multi-Granularity PerspectivetfTKDE2020/A
GSNetGSNet: Learning Spatial-Temporal Correlations from Geographical and Semantic Aspects for Traffic Accident Risk ForecastingPytorchAAAI2021/A
DSTGCNDeep Spatio-Temporal Graph Convolutional Network for Traffic Accident PredictionPytorchNeurocomputing2020/C
Traffic location predictionSTRNNPredicting the Next Location: A Recurrent Model with Spatial and Temporal ContextsPytorchAAAI2016/A
DeepMoveDeepMove: Predicting Human Mobility with Attentional Recurrent NetworksPytorchWWW2018/A
HST-LSTMHST-LSTM: A Hierarchical Spatial-Temporal Long-Short Term Memory Network for Location PredictionPytorchIJCAI2018/A
VANextPredciting Human Mobility via Variational AttentiontfWWW2019/A
FQAMulti-agent Trajectory Prediction with Fuzzy Query AttentionPytorchNIPS2020/A
MALMCSDynamic Public Resource Allocation based on Human Mobility PredictionpythonUbiComp2020/A
SERMSERM: A Recurrent Model for Next Location Prediction in Semantic TrajectoriesKerasCIKM2017/B
Map matchingST-MatchingMap-matching for low-sampling-rate GPS trajectoriesPythonSIGSPATIAL2009/None
IVMMAn Interactive-Voting Based Map Matching AlgorithmPythonMDM2010/C
HMMMHidden Markov map matching through noise and sparsenessPythonSIGSPATIAL2009/None
PIFThe Path Inference Filter: Model-Based Low-Latency Map Matching of Probe Vehicle DataPythonTITS2014/B
Othersseq2seqSequence to Sequence Learning with Neural NetworksKerasNIPS2014/A
NASREmpowering A* Search Algorithms with Neural Networks for Personalized Route RecommendationtfKDD2019/A
HRNRLearning Effective Road Network Representation with Hierarchical Graph Neural NetworksPytorchKDD2020/A
SHARESemi-Supervised Hierarchical Recurrent Graph Neural Network for City-Wide Parking Availability PredictionPytorchAAAI2020/A
TALEPre-training Time-Aware Location Embeddings from Spatial-Temporal TrajectoriesPytorchTKDE2021/A
PVCGNPhysical-Virtual Collaboration Modeling for Intra-and Inter-Station Metro Ridership PredictionPytorchTITS2020/B
DCRNNEvaluation and prediction of transportation resilience under extreme weather events: A diffusion graph convolutional approachtfTransportation Research Part C: Emerging Technologies2020/none
LibCityLibCity: An Open Library for Traffic PredictionPytorchSIGSPATIAL2021/None