Home

Awesome

ORB-SLAM2

ORB-SLAM2 Authors: Raul Mur-Artal, Juan D. Tardos, J. M. M. Montiel and Dorian Galvez-Lopez (DBoW2). The original implementation can be found here.

ORB-SLAM2 ROS node

This is the ROS implementation of the ORB-SLAM2 real-time SLAM library for Monocular, Stereo and RGB-D cameras that computes the camera trajectory and a sparse 3D reconstruction (in the stereo and RGB-D case with true scale). It is able to detect loops and relocalize the camera in real time. This implementation removes the Pangolin dependency, and the original viewer. All data I/O is handled via ROS topics. For visualization you can use RViz. This repository is maintained by Lennart Haller on behalf of appliedAI.

Features

Related Publications:

[Monocular] Raúl Mur-Artal, J. M. M. Montiel and Juan D. Tardós. ORB-SLAM: A Versatile and Accurate Monocular SLAM System. IEEE Transactions on Robotics, vol. 31, no. 5, pp. 1147-1163, 2015. (2015 IEEE Transactions on Robotics Best Paper Award). PDF.

[Stereo and RGB-D] Raúl Mur-Artal and Juan D. Tardós. ORB-SLAM2: an Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras. IEEE Transactions on Robotics, vol. 33, no. 5, pp. 1255-1262, 2017. PDF.

[DBoW2 Place Recognizer] Dorian Gálvez-López and Juan D. Tardós. Bags of Binary Words for Fast Place Recognition in Image Sequences. IEEE Transactions on Robotics, vol. 28, no. 5, pp. 1188-1197, 2012. PDF

1. License

ORB-SLAM2 is released under a GPLv3 license. For a list of all code/library dependencies (and associated licenses), please see Dependencies.md.

For a closed-source version of ORB-SLAM2 for commercial purposes, please contact the authors: orbslam (at) unizar (dot) es.

If you use ORB-SLAM2 (Monocular) in an academic work, please cite:

@article{murTRO2015,
  title={{ORB-SLAM}: a Versatile and Accurate Monocular {SLAM} System},
  author={Mur-Artal, Ra\'ul, Montiel, J. M. M. and Tard\'os, Juan D.},
  journal={IEEE Transactions on Robotics},
  volume={31},
  number={5},
  pages={1147--1163},
  doi = {10.1109/TRO.2015.2463671},
  year={2015}
 }

if you use ORB-SLAM2 (Stereo or RGB-D) in an academic work, please cite:

@article{murORB2,
  title={{ORB-SLAM2}: an Open-Source {SLAM} System for Monocular, Stereo and {RGB-D} Cameras},
  author={Mur-Artal, Ra\'ul and Tard\'os, Juan D.},
  journal={IEEE Transactions on Robotics},
  volume={33},
  number={5},
  pages={1255--1262},
  doi = {10.1109/TRO.2017.2705103},
  year={2017}
 }

2. Building orb_slam2_ros

We have tested the library in Ubuntu 16.04 with ROS Kinetic and Ubuntu 18.04 with ROS Melodic. A powerful computer (e.g. i7) will ensure real-time performance and provide more stable and accurate results. A C++11 compiler is needed.

Getting the code

Clone the repository into your catkin workspace:

git clone https://github.com/appliedAI-Initiative/orb_slam_2_ros.git

ROS

This ROS node requires catkin_make_isolated or catkin build to build. This package depends on a number of other ROS packages which ship with the default installation of ROS. If they are not installed use rosdep to install them. In your catkin folder run

sudo rosdep init
rosdep update
rosdep install --from-paths src --ignore-src -r -y

to install all dependencies for all packages. If you already initialized rosdep you get a warning which you can ignore.

Eigen3

Required by g2o. Download and install instructions can be found here. Otherwise Eigen can be installed as a binary with:

sudo apt install libeigen3-dev

Required at least Eigen 3.1.0.

Building

To build the node run

catkin build

in your catkin folder.

3. Configuration

Vocab file

To run the algorithm expects both a vocabulary file (see the paper) which ships with this repository.

Config

The config files for camera calibration and tracking hyper paramters from the original implementation are replaced with ros paramters which get set from a launch file.

ROS parameters, topics and services

Parameters

There are three types of parameters right now: static- and dynamic ros parameters and camera settings. The static parameters are send to the ROS parameter server at startup and are not supposed to change. They are set in the launch files which are located at ros/launch. The parameters are:

Dynamic parameters can be changed at runtime. Either by updating them directly via the command line or by using rqt_reconfigure which is the recommended way. The parameters are:

Finally, the intrinsic camera calibration parameters along with some hyperparameters can be found in the specific yaml files in orb_slam2/config.

Published topics

The following topics are being published and subscribed to by the nodes:

Subscribed topics

4. Services

All nodes offer the possibility to save the map via the service node_type/save_map. So the save_map services are:

The save_map service expects the name of the file the map should be saved at as input.

At the moment, while the save to file takes place, the SLAM is inactive.

5. Run

After sourcing your setup bash using

source devel/setup.bash

Suported cameras

CameraMonoStereoRGBD
Intel RealSense r200roslaunch orb_slam2_ros orb_slam2_r200_mono.launchroslaunch orb_slam2_ros orb_slam2_r200_stereo.launchroslaunch orb_slam2_ros orb_slam2_r200_rgbd.launch
Intel RealSense d435roslaunch orb_slam2_ros orb_slam2_d435_mono.launch-roslaunch orb_slam2_ros orb_slam2_d435_rgbd.launch
Mynteye Sroslaunch orb_slam2_ros orb_slam2_mynteye_s_mono.launch roslaunch orb_slam2_ros orb_slam2_mynteye_s_stereo.launch -
Stereolabs ZED 2-roslaunch orb_slam2_ros orb_slam2_zed2_stereo.launch -

Use the command from the corresponding cell for your camera to launch orb_slam2_ros with the right parameters for your setup.

6. Docker

An easy way is to use orb_slam2_ros with Docker. This repository ships with a Dockerfile based on ROS kinetic. The container includes orb_slam2_ros as well as the Intel RealSense package for quick testing and data collection.

7. FAQ

Here are some answers to frequently asked questions.

How to save the map

To save the map with a simple command line command run one the commands (matching to your node running):

rosservice call /orb_slam2_rgbd/save_map map.bin
rosservice call /orb_slam2_stereo/save_map map.bin
rosservice call /orb_slam2_mono/save_map map.bin

You can replace "map.bin" with any file name you want. The file will be saved at ROS_HOME which is by default ~/.ros

Note that you need to source your catkin workspace in your terminal in order for the services to become available.

Using a new / different camera

You can use this SLAM with almost any mono, stereo or RGBD cam you want. In order to use this with a different camera you need to supply a set of paramters to the algorithm. They are loaded from a launch file from the ros/launch folder.

  1. You need the camera intrinsics and some configurations. Here you can read about what the camera calibration parameters mean. Use this ros node to obtain them for your camera. If you use a stereo or RGBD cam in addition to the calibration and resolution you also need to adjust three other parameters: Camera.bf, ThDepth and DepthMapFactor.
  2. The ros launch file which is at ros/launch needs to have the correct topics to subscribe to from the new camera. NOTE If your camera supports this, orb_slam_2_ros can subscribe to the camera_info topic and read the camera calibration parameters from there.

Problem running the realsense node

The node for the RealSense fails to launch when running

roslaunch realsense2_camera rs_rgbd.launch

to get the depth stream. Solution: install the rgbd-launch package with the command (make sure to adjust the ROS distro if needed):

sudo apt install ros-melodic-rgbd-launch