Home

Awesome

Quick Links: Installation | Documentation

Build Status PyPI Release Python Versions

<img align="right" src="https://docs-assets.developer.apple.com/turicreate/turi-dog.svg" alt="Turi Create" width="100">

Turi Create

Turi Create simplifies the development of custom machine learning models. You don't have to be a machine learning expert to add recommendations, object detection, image classification, image similarity or activity classification to your app.

With Turi Create, you can accomplish many common ML tasks:

ML TaskDescription
RecommenderPersonalize choices for users
Image ClassificationLabel images
Drawing ClassificationRecognize Pencil/Touch Drawings and Gestures
Sound ClassificationClassify sounds
Object DetectionRecognize objects within images
One Shot Object DetectionRecognize 2D objects within images using a single example
Style TransferStylize images
Activity ClassificationDetect an activity using sensors
Image SimilarityFind similar images
ClassifiersPredict a label
RegressionPredict numeric values
ClusteringGroup similar datapoints together
Text ClassifierAnalyze sentiment of messages

Example: Image classifier with a few lines of code

If you want your app to recognize specific objects in images, you can build your own model with just a few lines of code:

import turicreate as tc

# Load data 
data = tc.SFrame('photoLabel.sframe')

# Create a model
model = tc.image_classifier.create(data, target='photoLabel')

# Make predictions
predictions = model.predict(data)

# Export to Core ML
model.export_coreml('MyClassifier.mlmodel')

It's easy to use the resulting model in an iOS application:

<p align="center"><img src="https://docs-assets.developer.apple.com/published/a2c37bce1f/689f61a6-1087-4112-99d9-bbfb326e3138.png" alt="Turi Create" width="600"></p>

Supported Platforms

Turi Create supports:

System Requirements

Turi Create requires:

Installation

For detailed instructions for different varieties of Linux see LINUX_INSTALL.md. For common installation issues see INSTALL_ISSUES.md.

We recommend using virtualenv to use, install, or build Turi Create.

pip install virtualenv

The method for installing Turi Create follows the standard python package installation steps. To create and activate a Python virtual environment called venv follow these steps:

# Create a Python virtual environment
cd ~
virtualenv venv

# Activate your virtual environment
source ~/venv/bin/activate

Alternatively, if you are using Anaconda, you may use its virtual environment:

conda create -n virtual_environment_name anaconda
conda activate virtual_environment_name

To install Turi Create within your virtual environment:

(venv) pip install -U turicreate

Documentation

The package User Guide and API Docs contain more details on how to use Turi Create.

GPU Support

Turi Create does not require a GPU, but certain models can be accelerated 9-13x by utilizing a GPU.

LinuxmacOS 10.13+macOS 10.14+ discrete GPUs, macOS 10.15+ integrated GPUs
Activity ClassificationImage ClassificationActivity Classification
Drawing ClassificationImage SimilarityObject Detection
Image ClassificationSound ClassificationOne Shot Object Detection
Image SimilarityStyle Transfer
Object Detection
One Shot Object Detection
Sound Classification
Style Transfer

macOS GPU support is automatic. For Linux GPU support, see LinuxGPU.md.

Building From Source

If you want to build Turi Create from source, see BUILD.md.

Contributing

Prior to contributing, please review CONTRIBUTING.md and do not provide any contributions unless you agree with the terms and conditions set forth in CONTRIBUTING.md.

We want the Turi Create community to be as welcoming and inclusive as possible, and have adopted a Code of Conduct that we expect all community members, including contributors, to read and observe.