Home

Awesome

NeuMan: Neural Human Radiance Field from a Single Video

This repository is a reference implementation for NeuMan. NeuMan reconstructs both the background scene and an animatable human from a single video using neural radiance fields.

[Paper]

<p align="center"> <img src="./resources/teaser.gif" height="260"> </p>

Video demos

Novel view and novel pose synthesis

[Bike] [Citron] [Parking lot] [Jogging] [Lab] [Seattle]

Compositional Synthesis

[Handshake] [Dance]

Environment

To create the environment using Conda:

conda env create -f environment.yml

Alternately, you can create the environment by executing:

conda create -n neuman_env python=3.7 -y;
conda activate neuman_env;
conda install pytorch==1.8.0 torchvision==0.9.0 cudatoolkit=10.2 -c pytorch;
# For RTX 30 series GPU with CUDA version 11.x, please use:
# conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=11.1 -c pytorch -c conda-forge
conda install -c fvcore -c iopath -c conda-forge fvcore iopath;
conda install -c bottler nvidiacub;
conda install pytorch3d -c pytorch3d;
conda install -c conda-forge igl;
pip install opencv-python joblib open3d imageio tensorboardX chumpy lpips scikit-image ipython matplotlib;

Notice that pytorch3d requires a specific version of pytorch, in our case pytorch=1.8.0.

Activate the environment:

conda activate neuman_env

Demo

Training

python train.py --scene_dir ./data/bike/ --name=bike_background --train_mode=bkg
python train.py --scene_dir ./data/bike  --name=bike_human --load_background=bike_background --train_mode=smpl_and_offset

Use your own video

Citation

@inproceedings{jiang2022neuman,
  title={NeuMan: Neural Human Radiance Field from a Single Video},
  author={Jiang, Wei and Yi, Kwang Moo and Samei, Golnoosh and Tuzel, Oncel and Ranjan, Anurag},
  booktitle={Proceedings of the European conference on computer vision (ECCV)},
  year={2022}
}

License

The code is released under the LICENSE terms.