Home

Awesome

<a target="_blank" href="https://colab.research.google.com/github/antonbaumann/MIMO-Unet/blob/main/MIMO_U_Net_NYUv2_depth.ipynb"> <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/> </a>

Probabilistic MIMO U-Net

This repository contains the code for the paper Probabilistic MIMO U-Net: Efficient and Accurate Uncertainty Estimation for Pixel-wise Regression.

Authors: Anton Baumann<sup>1</sup>, Thomas Roßberg<sup>1</sup>, Michael Schmitt<sup>1</sup>
<sup>1</sup> University of the Bundeswehr Munich
in UnCV Workshop at ICCV 2023 (Oral Presentation)

MIMO U-Net

Installation

git clone https://github.com/antonbaumann/MIMO-Unet.git
cd MIMO-Unet
pip install -r requirements.txt
export PYTHONPATH=$PYTHONPATH:MIMO_REPOSITORY_PATH

# if you want to use the SEN12TP dataset
git clone https://github.com/oceanites/sen12tp.git
export PYTHONPATH=$PYTHONPATH:SEN12TP_REPOSITORY_PATH

Training

The training scripts are located in the scripts/train/ folder. The following scripts are available:

NDVI

Train a MIMO U-Net with two subnetworks and input repetition for NDVI prediction on the SEN12TP dataset.

python train_ndvi.py \
  --dataset_dir /scratch/trossberg/sen12tp-v1-split1 \
  --checkpoint_path /ws/data/wandb_ndvi \
  --max_epochs 100 \
  --batch_size 32 \
  --num_subnetworks 2 \
  --filter_base_count 30 \
  --num_workers 30 \
  -t NDVI \
  -i VV_sigma0 \
  -i VH_sigma0 \
  --patch_size 256 \
  --stride 249 \
  --learning_rate 0.001 \
  --input_repetition_probability 0.0 \
  --loss_buffer_size 10 \
  --loss_buffer_temperature 0.3 \
  --core_dropout_rate 0.0 \
  --encoder_dropout_rate 0.0 \
  --decoder_dropout_rate 0.0 \
  --loss laplace_nll \
  --seed 1 \
  --project "MIMO NDVI Prediction"

NYU Depth V2

Train a MIMO U-Net with two subnetworks and input repetition for depth prediction on the NYU Depth V2 dataset.

python train_nyuv2_depth.py \
  --dataset_dir /ws/data/nyuv2/depth \
  --checkpoint_path /ws/data/wandb_experiments_2 \
  --max_epochs 100 \
  --batch_size 64 \
  --num_subnetworks 2 \
  --filter_base_count 21 \
  --num_workers 50 \
  --learning_rate 0.001 \
  --input_repetition_probability 0.0 \
  --loss_buffer_size 10 \
  --loss_buffer_temperature 0.3 \
  --core_dropout_rate 0.0 \
  --encoder_dropout_rate 0.0 \
  --decoder_dropout_rate 0.0 \
  --loss laplace_nll \
  --seed 1 \
  --train_dataset_fraction 1 \
  --project "MIMO NYUv2Depth"

For Monte-Carlo Dropout, set --core_dropout_rate 0.1, --encoder_dropout_rate 0.1, --decoder_dropout_rate 0.1.

Evaluation

The evaluation scripts are located in the scripts/test/ folder. These scripts evaluate a trained model on a dataset and save the results in the specified result directory.

  1. {dataset_name}_{epsilon}_inputs.npy: Inputs to the model.
  2. {dataset_name}_{epsilon}_y_trues.npy: Targets of the model.
  3. {dataset_name}_{epsilon}_y_preds.npy: Predictions of the model.
  4. {dataset_name}_{epsilon}_aleatoric_vars.npy: Aleatoric uncertainty (variance) of the model.
  5. {dataset_name}_{epsilon}_epistemic_vars.npy: Epistemic uncertainty (variance) of the model.
  6. {dataset_name}_{epsilon}_df_pixels.csv: Dataframe with all information above per pixel.
  7. {dataset_name}_{epsilon}_precision_recall.csv: Dataframe for precision-recall curve.
  8. {dataset_name}_{epsilon}_calibration.csv: Dataframe for calibration curve.

NDVI

Evaluate a trained model for NDVI prediction on the SEN12TP dataset.

python test_ndvi.py \
  --dataset_dir PATH_TO_DATASET/test/ \
  --model_checkpoint_path PATH_TO_CHECKPOINT/model.ckpt \ 
  --result_dir PATH_TO_RESULT_DIR \
  --processes 5

NYU Depth V2

Evaluate a trained model for depth prediction on the NYU Depth V2 dataset.

python test_nyuv2_depth.py \
  --model_checkpoint_paths PATH_TO_CHECKPOINT/model.ckpt \
  --dataset_dir PATH_TO_DATASET \
  --result_dir PATH_TO_RESULT_DIR \
  --processes 5