Home

Awesome

LightGBM Ruby

LightGBM - high performance gradient boosting - for Ruby

Build Status

Installation

Add this line to your application’s Gemfile:

gem "lightgbm"

On Mac, also install OpenMP:

brew install libomp

Training API

Prep your data

x = [[1, 2], [3, 4], [5, 6], [7, 8]]
y = [1, 2, 3, 4]

Train a model

params = {objective: "regression"}
train_set = LightGBM::Dataset.new(x, label: y)
booster = LightGBM.train(params, train_set)

Predict

booster.predict(x)

Save the model to a file

booster.save_model("model.txt")

Load the model from a file

booster = LightGBM::Booster.new(model_file: "model.txt")

Get the importance of features

booster.feature_importance

Early stopping

LightGBM.train(params, train_set, valid_sets: [train_set, test_set], early_stopping_rounds: 5)

CV

LightGBM.cv(params, train_set, nfold: 5, verbose_eval: true)

Scikit-Learn API

Prep your data

x = [[1, 2], [3, 4], [5, 6], [7, 8]]
y = [1, 2, 3, 4]

Train a model

model = LightGBM::Regressor.new
model.fit(x, y)

For classification, use LightGBM::Classifier

Predict

model.predict(x)

For classification, use predict_proba for probabilities

Save the model to a file

model.save_model("model.txt")

Load the model from a file

model.load_model("model.txt")

Get the importance of features

model.feature_importances

Early stopping

model.fit(x, y, eval_set: [[x_test, y_test]], early_stopping_rounds: 5)

Data

Data can be an array of arrays

[[1, 2, 3], [4, 5, 6]]

Or a Numo array

Numo::NArray.cast([[1, 2, 3], [4, 5, 6]])

Or a Rover data frame

Rover.read_csv("houses.csv")

Or a Daru data frame

Daru::DataFrame.from_csv("houses.csv")

Helpful Resources

Related Projects

Credits

This library follows the Python API. A few differences are:

Thanks to the xgboost gem for showing how to use FFI.

History

View the changelog

Contributing

Everyone is encouraged to help improve this project. Here are a few ways you can help:

To get started with development:

git clone https://github.com/ankane/lightgbm-ruby.git
cd lightgbm-ruby
bundle install
bundle exec rake vendor:all
bundle exec rake test