Home

Awesome

SIFT-on-MATLAB

An implementation of Distinctive image features from scale-invariant keypoints, created by David Lowe. This is a term project for "Advanced Topics in Medical Image Analysis" course at Middle East Technical University.

Usage

Read an image in MatLab and convert it into gray scale image then use it as input for SIFT function.

Example:

image = imread('image.jpg');
image = double(rgb2gray(image));
keyPoints = SIFT(image,3,5,1.6);

Key points created in the process are objects. All of the key points are returned in a cell array. Each key point contains:

Image Visualizer

This function's main purpose is to illustrate the keypoints on the image. The function SIFTKeypointVisualizer will be called after extracting keypoints.

Example:

image = SIFTKeypointVisualizer(image,keyPoints);
imshow(uint8(image));

Dependencies

This code is dependent on some functions within Image Processing Toolbox version 9.2.

This code should be compatible with any MatLab newer than R2015a.

Disclaimer

All the rights to "Distinctive image features from scale-invariant keypoints" are reserved for University of British Columbia. A license must be obtained from the University of British Columbia for any commercial applications.

2023-09-09 Update to the Disclaimer

The patent is expired on March 6, 2020, and the algorithm is now - possibly - public knowledge.

Contact

For further information please contact zabardast.amin@metu.edu.tr or kilic.ozkan@metu.edu.tr.