Awesome
CrossCodeEval: A Diverse and Multilingual Benchmark for Cross-File Code Completion
This repository contains the data and inference code of the NeurIPS 2023 (Datasets and Benchmarks track) paper "CrossCodeEval: A Diverse and Multilingual Benchmark for Cross-File Code Completion."
Requirements
- Uncompress the CrossCodeEval data via
tar -xvJf data/crosscodeeval_data.tar.xz -C data/
- The data contains {baseline, retrieval, retrieval w/ ref.} setting x {bm25, UniXCoder, OpenAI Ada} retriever.
- Please email us if you need the raw data.
- Install dependencies via
pip install -r requirements.txt
- Build tree sitter via
bash scripts/build_treesitter.sh
Evaluation on CrossCodeEval
Our evaluation consists of two steps: generation and metrics calculation.
Generation
Publicly Available Models
For publicly available models like StarCoder, DeepSeek-Coder, etc., we recommended using vLLM for fast and distributed inference on CrossCodeEval.
export gpus=2
export model=bigcode/starcoder2-3b
export language=python
export task=line_completion_rg1_unixcoder_cosine_sim
export output_dir=./tmp/crosscodeeval_testrun/
python scripts/vllm_inference.py \
--tp $gpus \
--task $task \
--language $language \
--model $model \
--output_dir $output_dir \
--use_crossfile_context
For additional args, e.g., cross-file context length and sampling top_p, please see python vllm_inference.py --help
.
First, configure accelerate
via accelerate config
if you haven't. A reference configuration is available at cceval_config.yaml
The following command demonstrates how to run greedy eval using codegen-350M on python with cross-file context.
export model_type=codelm_cfc # or codelm for no cross-file context eval
export model_name=Salesforce/codegen-350M-mono
export language=python
export ts_lib=./build/${language}-lang-parser.so
export dtype=bf16 # or fp16
export prompt_file=./data/crosscodeeval_data/${language}/line_completion_rg1_unixcoder_cosine_sim.jsonl # or other options in the dir, which corresponds to different retrieval methods and/or retrieval settings
export max_seq_length=2048
export cfc_seq_length=512
export batch_size=16 # reduce for larger models
export output_dir=./tmp/crosscodeeval_testrun/
accelerate launch eval.py \
--model_type $model_type \
--model_name_or_path $model_name \
--cfc_seq_length $cfc_seq_length \
--prompt_file $prompt_file \
--gen_length 50 \
--max_seq_length $max_seq_length \
--batch_size $batch_size \
--output_dir $output_dir \
--dtype $dtype \
--num_return_sequences 1 \
--overwrite_cache True \
--ts_lib $ts_lib \
--language $language
You may run sampling via the following (additional) args:
--do_sample \
--top_p 0.95 \
--temperature 0.2 \
--num_return_sequences 5 \
</div>
</details>
OpenAI models
OpenAI models are accessible through an API. You may use the following script:
export model=gpt-3.5-turbo-0125
export language=python
export task=line_completion_rg1_unixcoder_cosine_sim
export output_dir=./tmp/crosscodeeval_openai_testrun/
python scripts/openai_inference.py \
--task $task \
--language $language \
--model $model \
--output_dir $output_dir \
--use_crossfile_context
Metrics Calculation
After obtaining the generation, we can calculate the final metrics
export language=python
export ts_lib=./build/${language}-lang-parser.so;
export task=line_completion_oracle_unixcoder_cosine_sim
export prompt_file=./data/${language}/${task}.jsonl
export output_dir=./tmp/crosscodeeval_testrun/;
python scripts/eval.py \
--prompt_file $prompt_file \
--output_dir $output_dir \
--ts_lib $ts_lib \
--language $language \
--only_compute_metric
Citation
@inproceedings{ding2023crosscodeeval,
title={CrossCodeEval: A Diverse and Multilingual Benchmark for Cross-File Code Completion},
author={Yangruibo Ding and Zijian Wang and Wasi Uddin Ahmad and Hantian Ding and Ming Tan and Nihal Jain and Murali Krishna Ramanathan and Ramesh Nallapati and Parminder Bhatia and Dan Roth and Bing Xiang},
year={2023},
booktitle={Thirty-seventh Conference on Neural Information Processing Systems Datasets and Benchmarks Track},
url={https://arxiv.org/pdf/2310.11248.pdf}
}
Questions
Please feel free to email us (email addresses in the paper). You may also submit an issue in this repo.
Security
See CONTRIBUTING for more information.
License
This project is licensed under the Apache-2.0 License.