Awesome
Subclass-Graph-Embedding
This repository contains Matlab code that performs dimensionality reduction and classification using the Subclass Graph Embedding methodology presented in journal paper "Maronidis, A., Tefas, A., & Pitas, I. (2015). Subclass graph embedding and a marginal fisher analysis paradigm. Pattern Recognition, 48(12), 4024-4035." It also contains code that performs multi-scale Spectral Clustering based on paper "Azran, A., & Ghahramani, Z. (2006, June). Spectral methods for automatic multiscale data clustering. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06) (Vol. 1, pp. 190-197). IEEE.".
"osu-svm" toolbox that is publicly available under "BSD license" in the following site https://sourceforge.net/projects/svm/ is mandatory in the case that the end user needs to run SVM classifier.
Contained files:
pca.m <br/> RandomDataGenerator.m <br/> SGE_AdjustParameterCV.m <br/> SGE_Assessment.m <br/> SGE_ClassCentroids.m <br/> SGE_Classification.m <br/> SGE_ConfusionMatrix.m <br/> SGE_CrossDivision.m <br/> SGE_CrossValidation.m <br/> SGE_DimReduction.m <br/> SGE_DivisionIds.m <br/> SGE_Evaluation.m <br/> SGE_FindLocalMax.m <br/> SGE_FindParameters.m <br/> SGE_FindPlausible.m <br/> SGE_GramMatrix.m <br/> SGE_GraphConstruct.m <br/> SGE_LaplacianEigenanalysis.m <br/> SGE_Mapping.m <br/> SGE_Maximin.m <br/> SGE_MultiSpecCluster.m <br/> SGE_NearestCentroid.m <br/> SGE_NearestClusterCentroid.m <br/> SGE_PatternRecognition.m <br/> SGE_Projection.m <br/> SGE_SubclassExtract.m <br/> SGE_SubclassLabels.m <br/>