Awesome
3D Local Convolutional Neural Networks for Gait Recognition
Overview
This repository is the official implementation of:
3D Local Convolutional Neural Networks for Gait Recognition
Zhen Huang, Dixiu Xue, Xu Shen, Xinmei Tian, Houqiang Li, Jianqiang Huang, Xian-Sheng Hua
In this work, we present a new building block for 3D CNNs with local information incorporated, termed as 3D local convolutional neural networks. Our local operations can be combined with any existing architectures. We demonstrate the superiority of local operations on the task of gait recognition where 3D local CNN consistently outperforms state-of-the-art models. We hope this work will shed light on more research on introducing simple but effective local operations as submodules of existing convolutional building blocks.
Installation Instructions
- Clone this repo:
git clone git@github.com:aliyun/3D-Local-CNN-for-Gait-Recognition.git
cd 3D-Local-CNN-for-Gait-Recognition
- Create a conda virtual environment and activate it:
conda create -n 3DLocalCNN python=3.6.4 -y
conda activate 3DLocalCNN
- Install
CUDA==10.2
withcudnn7
following the official installation instructions - Install
PyTorch==1.7.1
andtorchvision==0.8.2
withCUDA==10.2
:
conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=10.2 -c pytorch
- Install
numpy==1.16.4, yaml, tensorboard, pyyaml, scikit-learn, opencv-python, imageio, matplotlib, seaborn, xarray
:
pip3 install numpy==1.16.4, yaml, tensorboard, pyyaml, scikit-learn, opencv-python, imageio, matplotlib, seaborn, xarray
Usage
Data preprocess
Download CASAI raw data to data/CASIA_raw and run python preprocess.py
Demo
(1) To train GaitSet from scratch, run
python main.py --config=configs/GaitSet_CASIA.yaml
(2) To train GaitPart from scratch, run
python main.py --config=configs/GaitPart_CASIA.yaml
(3) To train 3DLocalCNN from scratch, run
python main.py --config=configs/3DLocalCNN_CASIA.yaml
License
- Apache License 2.0