Awesome
<h2>Extraction and recovery of spatio-temporal structure in latent dynamics alignment with diffusion models [NeurIPS'2023 Spotlight]</h2> <div align='center' ><font size='4'>Yule Wang, Zijing Wu, Chengrui Li, and Anqi Wu</font></div> <div align='center' ><font size='5'>Georgia Institute of Technology</font></div> <div align='center' ><font size='5'>Atlanta, GA, USA</font></div><img src="images/GTVertical_RGB.png" alt="GTVertical_RGB" width="140" /><img src="images/127633222.png" alt="GTVertical_RGB" width="120" />
<div align=center><img src="images/ERDiff_main_github.png", width="650"></div>Oct.19th Update
Adding nn.init.eye_(self.low_d_readin_t.weight) for the linear probing layers for further alignment stability.
Environment Setup
To install the required dependancies using conda, run:
$ conda create --name erdiff --file requirements.txt
To install the required dependancies using Python virtual environment, run:
$ python3 -m venv erdiff
$ source erdiff/bin/activate
$ python3 -m pip install --upgrade pip
$ python3 -m pip install -e .
Latent Dynamics Visualization
Cited as
@article{wang2024extraction,
title={Extraction and recovery of spatio-temporal structure in latent dynamics alignment with diffusion model},
author={Wang, Yule and Wu, Zijing and Li, Chengrui and Wu, Anqi},
journal={Advances in Neural Information Processing Systems},
volume={36},
year={2024}
}