Home

Awesome

This repository contains source code for NAACL 2019 paper "An Embarrassingly Simple Approach for Transfer Learning from Pretrained Language Models" (Paper link)

Introduction

This paper presents a simple transfer learning approach that addresses the problem of catastrophic forgetting. We pretrain a language model and then transfer it to a new model, to which we add a recurrent layer and an attention mechanism. Based on multi-task learning, we use a weighted sum of losses (language model loss and classification loss) and fine-tune the pretrained model on our (classification) task.

Architecture

<p align="center"> <img src="https://user-images.githubusercontent.com/30402550/58558299-19d26680-8229-11e9-893d-99d25c911c7a.png" width="450"> </p>

Step 1:

Step 2:

Reference

@inproceedings{chronopoulou-etal-2019-embarrassingly,
    title = "An Embarrassingly Simple Approach for Transfer Learning from Pretrained Language Models",
    author = "Chronopoulou, Alexandra  and
      Baziotis, Christos  and
      Potamianos, Alexandros",
    booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
    month = jun,
    year = "2019",
    address = "Minneapolis, Minnesota",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/N19-1213",
    pages = "2089--2095",
}

Prerequisites

Dependencies

Install Requirements

Create Environment (Optional): Ideally, you should create a conda environment for the project.

conda create -n siatl python=3
conda activate siatl

Install PyTorch 0.4.0 with the desired cuda version to use the GPU:

conda install pytorch==0.4.0 torchvision -c pytorch

Then install the rest of the requirements:

pip install -r requirements.txt

Download Data

You can find Sarcasm Corpus V2 (link) under datasets/

Plot visualization

Visdom is used to visualized metrics during training. You should start the server through the command line (using tmux or screen) by typing visdom. You will be then able to see the visualizations by going to http://localhost:8097 in your browser.

Check here for more: https://github.com/facebookresearch/visdom#usage

Training

In order to train the model, either the LM or the SiATL, you need to run the corresponding python script and pass as an argument a yaml model config. The yaml config specifies all the configuration details of the experiment to be conducted. To make any changes to a model, change an existing or create a new yaml config file.

The yaml config files can be found under model_configs/ directory.

Use the pretrained Language Model:

cd checkpoints/
wget https://www.dropbox.com/s/lalizxf3qs4qd3a/lm20m_70K.pt 

(Download it and place it in checkpoints/ directory)

(Optional) Train a Language Model:

Assuming you have placed the training and validation data under datasets/<name_of_your_corpus/train.txt, datasets/<name_of_your_corpus/valid.txt (check the model_configs/lm_20m_word.yaml's data section), you can train a LM.

See for example:

python models/sent_lm.py -i lm_20m_word.yaml

Fine-tune the Language Model on the labeled dataset, using an auxiliary LM loss, 2 optimizers and sequential unfreezing, as described in the paper:

To fine-tune it on the Sarcasm Corpus V2 dataset:

python models/run_clf.py -i SCV2_aux_ft_gu.yaml --aux_loss --transfer