Awesome
Root-Tracking
Estimating root turnover from two minirhizotron images.
Source code for the paper "Tracking Growth and Decay of Plant Roots in Minirhizotron Images" (WACV2023).
Setup:
Tested with Python 3.7
python -m venv venv
source venv/bin/activate
pip install -r requirements.txt
#download pretrained models
python fetch_models.py
Inference (or see the example notebook):
python infer.py \
sample_data/CW_T001_L003_06.08.18_174938_009_SS.tiff \
sample_data/CW_T001_L003_02.08.19_093548_022_CA.tiff \
--segmentation_model=models/detection/2022-04-19_028a_WM.pt.zip \
--similarity_model=models/tracking/2022-01-10_030_roottracking.stage2.pt.zip
Training:
python train.py \
--inputfiles=path/to/data/*.tiff \
--segmentation_model=path/to/segmentation/model.pt.zip
Citation
@InProceedings{RootTracking_2023_WACV,
author = {Gillert, Alexander and Peters, Bo and Freiherr von Lukas, Uwe and Kreyling, J\"urgen and Blume-Werry, Gesche},
title = {Tracking Growth and Decay of Plant Roots in Minirhizotron Images},
booktitle = {Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)},
month = {January},
year = {2023}
}