Awesome
Dif-fuse
Pytorch repository for the paper “Diffusion Models for Counterfactual Generation and Anomaly Detection in Brain Images”.
To pre-process BraTS data, after placing the NIfTI files in the folder data/brats2021, you can run:
python scripts/brats-preprocess.py
To train a diffusion model on healthy samples:
python scripts/image_train.py
To train an autoencoder to reconstruct the images:
python scripts/train_autoencoder.py -filepath_to_arguments_json_config scripts/baseline.json --experiment_name autoencoder
To train a baseline classifier to classify the images:
python scripts/train_baseline_classifier.py -filepath_to_arguments_json_config scripts/baseline.json --experiment_name baseline_classifier
To generate the saliency maps with ACAT (Adversarial Counterfactual Attention), employing the classifier and autoencoder trained in the previous steps:
python scripts/saliency_maps.py -filepath_to_arguments_json_config scripts/baseline.json --experiment_name create_saliency
To generate healthy samples with Dif-fuse, you can run the following code, making sure to set the correct path to the model that you wish to use:
python scripts/image_sample_dif-fuse.py --model_path results/test/model054000.pt