Awesome
wy
C++ wrapper around wyhash and wyrand: https://github.com/wangyi-fudan/wyhash
wyhash and wyrand are the ideal 64-bit hash function and PRNG respectively:
- Solid: wyhash passed SMHasher, wyrand passed BigCrush, practrand.
- Portable: 64-bit / 32-bit system, big / little endian.
- Fastest: Efficient on 64-bit machines, especially for short keys.
- Simplest: In the sense of code size.
- Salted: We use dynamic secret to avoid intended attack.
Usage
First you need to link the library to your project with cmake:
include(FetchContent)
FetchContent_Declare(wy URL https://github.com/alainesp/wy/archive/refs/heads/main.zip)
FetchContent_MakeAvailable(wy)
target_link_libraries(YOUR_TARGET PRIVATE wy)
Or simply download the wy.hpp header that is the only requirement.
Random generation example
// include the required header
#include <wy.hpp>
#include <random>
void main()
{
// Create a pseudo-random generator
wy::rand r;
// Using direct methods
uint64_t r_value = r(); // Generate a random number
double r_uniform01 = r.uniform_dist(); // Generate a random number from the uniform distribution [0, 1)
uint64_t runiformk = r.uniform_dist(13); // Generate a random number from the uniform distribution [0, 13)
double r_uniform_p = r.uniform_dist(1.5, 4.7); // Generate a random number from the uniform distribution [1.5, 4.7)
double r_gaussian01 = r.gaussian_dist(); // Generate a random number from the Gaussian distribution with mean=0 and std=1
double r_gaussian_p = r.gaussian_dist(1.1, 2.3); // Generate a random number from the Gaussian distribution with mean=1.1 and std=2.3
// Using C++ <random> distributions
std::uniform_int_distribution<uint64_t> dist(0, 13);
runiformk = dist(r); // Similar to r.uniform_dist(13) but slower
std::normal_distribution<double> gdist(1.1, 2.3);
r_gaussian_p = gdist(r); // Similar to r.gaussian_dist(1.1, 2.3) but slower
}
Hash function example
// include the required header
#include <wy.hpp>
#include <unordered_map>
struct Person
{
std::string name;
std::string surname;
};
void main()
{
// Create random persons
std::vector<Person> persons;
for (size_t i = 0; i < 500; i++)
persons.push_back(Person{ std::string("Person Name") + std::to_string(i), std::string("Surname") });
// Create hashtable
std::unordered_map<std::string, Person, wy::hash<std::string>> h;
// Add persons to the hashtable
for (size_t i = 0; i < persons.size(); i++)
h[persons[i].name] = persons[i];
// Count persons
size_t persons_found = 0;
for (size_t i = 0; i < persons.size() * 2; i++)
persons_found += h.count(std::string("Person Name") + std::to_string(i));
printf("Found %I64i persons", persons_found);
}
Performance
Running on a single threaded Ryzen 7 4800H laptop CPU
--------------------------------------------------
Random Performance
--------------------------------------------------
Random : 1384M op/sec
--------------------------------------------------
Uniform [0, 1) : 1153M op/sec
Uniform [min, max) : 1013M op/sec
Uniform [0, k) : 1047M op/sec
--------------------------------------------------
Gaussian [0, 1] : 769M op/sec
Gaussian [mean, std]: 720M op/sec
--------------------------------------------------
Stream [1024] : 12.9 GB/sec
Stream [4096] : 10.3 GB/sec
--------------------------------------------------
Hashing Performance
--------------------------------------------------
uint64_t : 1104M op/sec
std::string(14) : 368M op/sec
std::string(28) : 323M op/sec
std::string(112) : 184M op/sec
std::string(448) : 61M op/sec
--------------------------------------------------