Home

Awesome

AirQo-api

deploy-apis-to-production deploy-apis-to-staging run-tests

What is AirQo??

The AirQo project aims to measure and quantify the scale of air pollution in and around African cities through the design, development and deployment of a network of low-cost air quality sensing devices mounted on either static or mobile objects.

System Architecture.

AirQo platform is composed of many microservices written in different languages that talk to each other using Istio.

Architecture of
microservices

The AirQo system architecture uses a mono repo for faster shipping. Each service has its own database. Consistency across these databases is maintained using an event driven approach. There is also an API gateway (Nginx) which clients use to access ther rest of the services. The state of the miscroservices is monitored using PM2. Deployment pattern is one service per container using Docker.

ServiceLanguageDescription
analyticsFlask/Python & MongoDBThis is the one to be used for all analytics work
auth-serviceNode.jsAuthentication services for this endpoint
data-mgtNode.js & MongoDBA fully-managed service for transforming/processing and enriching data in stream (real time) and batch (historical) modes with equal reliability and expressiveness
device-registry .Node.jsCarry out the management of the devices.
incentivesNode.jsThe payment service to incetivise various stakeholders
predictFlask/Python & MongoDBmicroservice to handle predictions or forecasts of air quality
device-monitoringFlask/Python & MongoDBMonitoring the status of all devices on the network.
locateFlask/Python & MongoDBmicroservice that consumes the model which recommend locations for placing devices
calibrateFlask/Python & MongoDBmicroservice that consumes the model which recommend locations for placing devices

Features

Installation and Usage

  1. Running locally with “Docker for Desktop” You will build and deploy microservices images to a single-node Kubernetes cluster running on your development machine.

  2. Running on Google Compute Engine (GCE)” You will build, upload and deploy the container images to a Kubernetes cluster on Google Cloud Engine.

Deployment

To deploy on the AirQo platform cd AirQo-api/src/microservice-name

Build the image docker build -t eu.gcr.io/gcp-project-name/microservice-name .

Run the container based on newly created image docker run -d -n best -p host-port:container-port eu.gcr.io/gcp-project-name/microservice-name

The flags for running the container

Visit the application in REST client or Web browser localhost:host-port. You should the application up and running. Now would be the time to run unit tests, for example:

delete container after successful unit tests docker rm --force best.

Share images on DockerHub or Google Container Registry docker push <host-name>/<GCP project>/<microservice-name>

Contributing

We invite you to help us build this platform. Please look up the contributing guide for details.

Issues

Before reporting a problem, please check out the issue guide.