Home

Awesome

Dress Code Dataset

This repository presents the virtual try-on dataset proposed in:

D. Morelli, M. Fincato, M. Cornia, F. Landi, F. Cesari, R. Cucchiara </br> Dress Code: High-Resolution Multi-Category Virtual Try-On </br>

[Paper] [Dataset Request Form] [Try-On Demo]

IMPORTANT!

Requests are manually validated on a weekly basis. If you do not receive a response, your request does not meet the outlined requirements.

<hr>

Please cite with the following BibTeX:

@inproceedings{morelli2022dresscode,
  title={{Dress Code: High-Resolution Multi-Category Virtual Try-On}},
  author={Morelli, Davide and Fincato, Matteo and Cornia, Marcella and Landi, Federico and Cesari, Fabio and Cucchiara, Rita},
  booktitle={Proceedings of the European Conference on Computer Vision},
  year={2022}
}
<p align="center"> <img src="images/dressCodePrev.gif" style="max-width: 800px; width: 80%"/> </p>

Dataset

We collected a new dataset for image-based virtual try-on composed of image pairs coming from different catalogs of YOOX NET-A-PORTER. </br> The dataset contains more than 50k high resolution model clothing images pairs divided into three different categories (i.e. dresses, upper-body clothes, lower-body clothes).

<p align="center"> <img src="images/dataset_comparison.gif" style="max-width: 800px; width: 80%"> </p>

Summary

Additional Info

Along with model and garment image pair, we provide also the keypoints, skeleton, human label map, and dense pose.

<p align="center"> <img src="images/addittional_infos.png" style="max-width: 800px; width: 80%"/> </p> <details><summary>More info</summary>

Keypoints

For all image pairs of the dataset, we stored the joint coordinates of human poses. In particular, we used OpenPose [1] to extract 18 keypoints for each human body.

For each image, we provided a json file containing a dictionary with the keypoints key. The value of this key is a list of 18 elements, representing the joints of the human body. Each element is a list of 4 values, where the first two indicate the coordinates on the x and y axis respectively.

Skeletons

Skeletons are RGB images obtained connecting keypoints with lines.

Human Label Map

We employed a human parser to assign each pixel of the image to a specific category thus obtaining a segmentation mask for each target model. Specifically, we used the SCHP model [2] trained on the ATR dataset, a large single person human parsing dataset focused on fashion images with 18 classes.

Obtained images are composed of 1 channel filled with the category label value. Categories are mapped as follows:

 0    background
 1    hat
 2    hair
 3    sunglasses
 4    upper_clothes
 5    skirt
 6    pants
 7    dress
 8    belt
 9    left_shoe
10    right_shoe
11    head
12    left_leg
13    right_leg
14    left_arm
15    right_arm
16    bag
17    scarf

Human Dense Pose

We also extracted dense label and UV mapping from all the model images using DensePose [3].

</details>

Experimental Results

Low Resolution 256 x 192

<table> <!-- TABLE BODY --> <tbody> <!-- TABLE HEADER --> <th valign="bottom">Name</th> <th valign="bottom">SSIM</th> <th valign="bottom">FID</th> <th valign="bottom">KID</th> <!-- ROW: CP VTON --> <tr> <td align="center">CP-VTON [4]</td> <td align="center">0.803</td> <td align="center">35.16</td> <td align="center">2.245</td> </tr> <!-- ROW: CP VTON+ --> <tr> <td align="center">CP-VTON+ [5]</td> <td align="center">0.902</td> <td align="center">25.19</td> <td align="center">1.586</td> </tr> <!-- ROW: CP VTON' --> <tr> <td align="center">CP-VTON* [4]</td> <td align="center">0.874</td> <td align="center">18.99</td> <td align="center">1.117</td> </tr> <!-- ROW: FPAFN --> <tr> <td align="center">PFAFN [6]</td> <td align="center">0.902</td> <td align="center">14.38</td> <td align="center">0.743</td> </tr> <!-- ROW: VITON GT --> <tr> <td align="center">VITON-GT [7]</td> <td align="center">0.899</td> <td align="center">13.80</td> <td align="center">0.711</td> </tr> <!-- ROW: WUTON --> <tr> <td align="center">WUTON [8]</td> <td align="center">0.902</td> <td align="center">13.28</td> <td align="center">0.771</td> </tr> <!-- ROW: ACGPN --> <tr> <td align="center">ACGPN [9]</td> <td align="center">0.868</td> <td align="center">13.79</td> <td align="center">0.818</td> </tr> <!-- ROW: OURS PSAD --> <tr> <td align="center">OURS</td> <td align="center">0.906</td> <td align="center">11.40</td> <td align="center">0.570</td> </tr> </tbody> </table>

Code

Due to a firm collaboration, we cannot release the code. However, we supply an empty Pytorch project to load data.

References

[1] Cao, et al. "OpenPose: Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields." IEEE TPAMI, 2019.

[2] Li, et al. "Self-Correction for Human Parsing." arXiv, 2019.

[3] Güler, et al. "Densepose: Dense human pose estimation in the wild." CVPR, 2018.

[4] Wang, et al. "Toward Characteristic-Preserving Image-based Virtual Try-On Network." ECCV, 2018.

[5] Minar, et al. "CP-VTON+: Clothing Shape and Texture Preserving Image-Based Virtual Try-On." CVPR Workshops, 2020.

[6] Ge, et al. "Parser-Free Virtual Try-On via Distilling Appearance Flows." CVPR, 2021.

[7] Fincato, et al. "VITON-GT: An Image-based Virtual Try-On Model with Geometric Transformations." ICPR, 2020.

[8] Issenhuth, el al. "Do Not Mask What You Do Not Need to Mask: a Parser-Free Virtual Try-On." ECCV, 2020.

[9] Yang, et al. "Towards Photo-Realistic Virtual Try-On by Adaptively Generating-Preserving Image Content." CVPR, 2020.

Contact

If you have any general doubt about our dataset, please use the public issues section on this github repo. Alternatively, drop us an e-mail at davide.morelli [at] unimore.it or marcella.cornia [at] unimore.it.