Awesome
MAD: Semantically Coherent Montages by Merging and Splitting Diffusion Paths
Official PyTorch implementation for "Merging and Splitting Diffusion Paths for Semantically Coherent Panoramas", presenting the Merge-Attend-Diffuse operator.
The code is tested on Python 3.11.7, CUDA 12.1, and PyTorch 2.1.2
If you find it useful, please cite it as:
@inproceedings{quattrini2024merging,
title={{Merging and Splitting Diffusion Paths for Semantically Coherent Panoramas}},
author={Quattrini, Fabio and Pippi, Vittorio and Cascianelli, Silvia and Cucchiara, Rita},
booktitle={Proceedings of the European Conference on Computer Vision},
year={2024},
organization={Springer}
}
Installation
This is the list of python packages that we need to run inference
conda create --name mad python=3.11.7
pip install -r requirements.txt
Inference with Stable Diffusion
Basic code to run inference with the default parameters
python sample_panorama_stable_diffusion.py
Some suggestions:
python sample_panorama_stable_diffusion.py --prompt "A shelf full of colorful books"
python sample_panorama_stable_diffusion.py --prompt "Tube map of London"
python sample_panorama_stable_diffusion.py --prompt "A whole shepherd pie"
Inference with LCM
Basic code to run inference with the default parameters
python sample_panorama_lcm.py
Some suggestions:
python sample_panorama_lcm.py --prompt "A pride concert full of colorful fireworks"
python sample_panorama_lcm.py --prompt "Top-view of a square pizza"
Some suggestions of vertical images:
python sample_panorama_lcm.py --prompt "A tower in a colorful sky" --W 512 --H 2048
python sample_panorama_lcm.py --prompt "A view of a river inside a canyon" --W 512 --H 2048
Acknowledgements
Our code is heavily based on the implementation of MultiDiffusion