Home

Awesome

<div align="center"> <img src="docs/adel-logo.svg" width="160" > </div>

AdelaiDet

As of Jan. 2024, the CloudStor server is dead. Model files are hosted on huggingface:

AdelaiDet is an open source toolbox for multiple instance-level recognition tasks on top of Detectron2. All instance-level recognition works from our group are open-sourced here.

To date, AdelaiDet implements the following algorithms:

Models

COCO Object Detecton Baselines with FCOS

Nameinf. timebox APdownload
FCOS_R_50_1x16 FPS38.7model
FCOS_MS_R_101_2x12 FPS43.1model
FCOS_MS_X_101_32x8d_2x6.6 FPS43.9model
FCOS_MS_X_101_32x8d_dcnv2_2x4.6 FPS46.6model
FCOS_RT_MS_DLA_34_4x_shtw52 FPS39.1model

More models can be found in FCOS README.md.

COCO Instance Segmentation Baselines with BlendMask

ModelNameinf. timebox APmask APdownload
Mask R-CNNR_101_3x10 FPS42.938.6
BlendMaskR_101_3x11 FPS44.839.5model
BlendMaskR_101_dcni3_5x10 FPS46.841.1model

For more models and information, please refer to BlendMask README.md.

COCO Instance Segmentation Baselines with MEInst

Nameinf. timebox APmask APdownload
MEInst_R_50_3x12 FPS43.634.5model

For more models and information, please refer to MEInst README.md.

Total_Text results with ABCNet

Nameinf. timee2e-hmeandet-hmeandownload
v1-totaltext11 FPS67.186.0model
v2-totaltext7.7 FPS71.887.2model

For more models and information, please refer to ABCNet README.md.

COCO Instance Segmentation Baselines with CondInst

Nameinf. timebox APmask APdownload
CondInst_MS_R_50_1x14 FPS39.735.7model
CondInst_MS_R_50_BiFPN_3x_sem13 FPS44.739.4model
CondInst_MS_R_101_3x11 FPS43.338.6model
CondInst_MS_R_101_BiFPN_3x_sem10 FPS45.740.2model

For more models and information, please refer to CondInst README.md.

Note that:

Installation

First install Detectron2 following the official guide: INSTALL.md.

Please use Detectron2 with commit id 9eb4831 if you have any issues related to Detectron2.

Then build AdelaiDet with:

git clone https://github.com/aim-uofa/AdelaiDet.git
cd AdelaiDet
python setup.py build develop

If you are using docker, a pre-built image can be pulled with:

docker pull tianzhi0549/adet:latest

Some projects may require special setup, please follow their own README.md in configs.

Quick Start

Inference with Pre-trained Models

  1. Pick a model and its config file, for example, fcos_R_50_1x.yaml.
  2. Download the model wget https://huggingface.co/tianzhi/AdelaiDet-FCOS/resolve/main/FCOS_R_50_1x.pth?download=true -O fcos_R_50_1x.pth
  3. Run the demo with
python demo/demo.py \
    --config-file configs/FCOS-Detection/R_50_1x.yaml \
    --input input1.jpg input2.jpg \
    --opts MODEL.WEIGHTS fcos_R_50_1x.pth

Train Your Own Models

To train a model with "train_net.py", first setup the corresponding datasets following datasets/README.md, then run:

OMP_NUM_THREADS=1 python tools/train_net.py \
    --config-file configs/FCOS-Detection/R_50_1x.yaml \
    --num-gpus 8 \
    OUTPUT_DIR training_dir/fcos_R_50_1x

To evaluate the model after training, run:

OMP_NUM_THREADS=1 python tools/train_net.py \
    --config-file configs/FCOS-Detection/R_50_1x.yaml \
    --eval-only \
    --num-gpus 8 \
    OUTPUT_DIR training_dir/fcos_R_50_1x \
    MODEL.WEIGHTS training_dir/fcos_R_50_1x/model_final.pth

Note that:

Acknowledgements

The authors are grateful to Nvidia, Huawei Noah's Ark Lab, ByteDance, Adobe who generously donated GPU computing in the past a few years.

Citing AdelaiDet

If you use this toolbox in your research or wish to refer to the baseline results published here, please use the following BibTeX entries:


@misc{tian2019adelaidet,
  author =       {Tian, Zhi and Chen, Hao and Wang, Xinlong and Liu, Yuliang and Shen, Chunhua},
  title =        {{AdelaiDet}: A Toolbox for Instance-level Recognition Tasks},
  howpublished = {\url{https://git.io/adelaidet}},
  year =         {2019}
}

and relevant publications:


@inproceedings{tian2019fcos,
  title     =  {{FCOS}: Fully Convolutional One-Stage Object Detection},
  author    =  {Tian, Zhi and Shen, Chunhua and Chen, Hao and He, Tong},
  booktitle =  {Proc. Int. Conf. Computer Vision (ICCV)},
  year      =  {2019}
}

@article{tian2021fcos,
  title   =  {{FCOS}: A Simple and Strong Anchor-free Object Detector},
  author  =  {Tian, Zhi and Shen, Chunhua and Chen, Hao and He, Tong},
  journal =  {IEEE T. Pattern Analysis and Machine Intelligence (TPAMI)},
  year    =  {2021}
}

@inproceedings{chen2020blendmask,
  title     =  {{BlendMask}: Top-Down Meets Bottom-Up for Instance Segmentation},
  author    =  {Chen, Hao and Sun, Kunyang and Tian, Zhi and Shen, Chunhua and Huang, Yongming and Yan, Youliang},
  booktitle =  {Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR)},
  year      =  {2020}
}

@inproceedings{zhang2020MEInst,
  title     =  {Mask Encoding for Single Shot Instance Segmentation},
  author    =  {Zhang, Rufeng and Tian, Zhi and Shen, Chunhua and You, Mingyu and Yan, Youliang},
  booktitle =  {Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR)},
  year      =  {2020}
}

@inproceedings{liu2020abcnet,
  title     =  {{ABCNet}: Real-time Scene Text Spotting with Adaptive {B}ezier-Curve Network},
  author    =  {Liu, Yuliang and Chen, Hao and Shen, Chunhua and He, Tong and Jin, Lianwen and Wang, Liangwei},
  booktitle =  {Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR)},
  year      =  {2020}
}

@ARTICLE{9525302,
  author={Liu, Yuliang and Shen, Chunhua and Jin, Lianwen and He, Tong and Chen, Peng and Liu, Chongyu and Chen, Hao},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, 
  title={ABCNet v2: Adaptive Bezier-Curve Network for Real-time End-to-end Text Spotting}, 
  year={2021},
  volume={},
  number={},
  pages={1-1},
  doi={10.1109/TPAMI.2021.3107437}
}

@inproceedings{wang2020solo,
  title     =  {{SOLO}: Segmenting Objects by Locations},
  author    =  {Wang, Xinlong and Kong, Tao and Shen, Chunhua and Jiang, Yuning and Li, Lei},
  booktitle =  {Proc. Eur. Conf. Computer Vision (ECCV)},
  year      =  {2020}
}

@inproceedings{wang2020solov2,
  title     =  {{SOLOv2}: Dynamic and Fast Instance Segmentation},
  author    =  {Wang, Xinlong and Zhang, Rufeng and Kong, Tao and Li, Lei and Shen, Chunhua},
  booktitle =  {Proc. Advances in Neural Information Processing Systems (NeurIPS)},
  year      =  {2020}
}

@article{wang2021solo,
  title   =  {{SOLO}: A Simple Framework for Instance Segmentation},
  author  =  {Wang, Xinlong and Zhang, Rufeng and Shen, Chunhua and Kong, Tao and Li, Lei},
  journal =  {IEEE T. Pattern Analysis and Machine Intelligence (TPAMI)},
  year    =  {2021}
}

@article{tian2019directpose,
  title   =  {{DirectPose}: Direct End-to-End Multi-Person Pose Estimation},
  author  =  {Tian, Zhi and Chen, Hao and Shen, Chunhua},
  journal =  {arXiv preprint arXiv:1911.07451},
  year    =  {2019}
}

@inproceedings{tian2020conditional,
  title     =  {Conditional Convolutions for Instance Segmentation},
  author    =  {Tian, Zhi and Shen, Chunhua and Chen, Hao},
  booktitle =  {Proc. Eur. Conf. Computer Vision (ECCV)},
  year      =  {2020}
}

@article{CondInst2022Tian,
  title   = {Instance and Panoptic Segmentation Using Conditional Convolutions},
  author  = {Tian, Zhi and Zhang, Bowen and Chen, Hao and Shen, Chunhua},
  journal = {IEEE T. Pattern Analysis and Machine Intelligence (TPAMI)},
  year    = {2022}
}

@inproceedings{tian2021boxinst,
  title     =  {{BoxInst}: High-Performance Instance Segmentation with Box Annotations},
  author    =  {Tian, Zhi and Shen, Chunhua and Wang, Xinlong and Chen, Hao},
  booktitle =  {Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR)},
  year      =  {2021}
}

@inproceedings{wang2021densecl,
  title     =   {Dense Contrastive Learning for Self-Supervised Visual Pre-Training},
  author    =   {Wang, Xinlong and Zhang, Rufeng and Shen, Chunhua and Kong, Tao and Li, Lei},
  booktitle =   {Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR)},
  year      =   {2021}
}

@inproceedings{Mao2021pose,
  title     =   {{FCPose}: Fully Convolutional Multi-Person Pose Estimation With Dynamic Instance-Aware Convolutions},
  author    =   {Mao, Weian and  Tian, Zhi  and Wang, Xinlong  and Shen, Chunhua},
  booktitle =   {Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR)},
  year      =   {2021}
}

License

For academic use, this project is licensed under the 2-clause BSD License - see the LICENSE file for details. For commercial use, please contact Chunhua Shen.