Home

Awesome

Poseur: Direct Human Pose Regression with Transformers

Poseur: Direct Human Pose Regression with Transformers,
Weian Mao*, Yongtao Ge*, Chunhua Shen, Zhi Tian, Xinlong Wang, Zhibin Wang, Anton van den Hengel
In: European Conference on Computer Vision (ECCV), 2022
arXiv preprint (arXiv 2201.07412)
(* equal contribution)

News :triangular_flag_on_post:

[2023/04/17] Release a naive version of Poseur based on ViT backbone. Please see poseur_vit_base_coco_256x192.

[2023/04/17] Release a naive version of Poseur trained on COCO-Wholebody dataset. Please see poseur_coco_wholebody.

Introduction

This project is bulit upon MMPose with commit ID eeebc652842a9724259ed345c00112641d8ee06d.

Installation & Quick Start

  1. Install following packages
pip install easydict einops
  1. Follow the MMPose instruction to install the project and set up the datasets (MS-COCO).

For training on COCO, run:

./tools/dist_train.sh \
configs/poseur/coco/poseur_r50_coco_256x192.py 8 \
--work-dir work_dirs/poseur_r50_coco_256x192

For evaluating on COCO, run the following command lines:

wget https://cloudstor.aarnet.edu.au/plus/s/UXr1Dn9w6ja4fM9/download -O poseur_256x192_res50_6dec_coco.pth
./tools/dist_test.sh configs/poseur/coco/poseur_res50_coco_256x192.py \
    poseur_256x192_r50_6dec_coco.pth 4 \
    --eval mAP \
    --cfg-options model.filp_fuse_type=\'type2\'

For visualizing on COCO, run the following command lines:

python demo/top_down_img_demo.py \
    configs/poseur/coco/poseur_res50_coco_256x192.py \
    poseur_256x192_res50_6dec_coco.pth \
    --img-root tests/data/coco/ --json-file tests/data/coco/test_coco.json \
    --out-img-root vis_results_poseur

COCO Keypoint Detection

NameAPAP.5AP.75download link
poseur_mobilenetv2_coco_256x19271.988.978.6model
poseur_mobilenetv2_coco_256x192_12dec72.388.978.9model
poseur_res50_coco_256x19275.590.782.6model
poseur_hrnet_w32_coco_256x19276.891.083.5model
poseur_hrnet_w48_coco_384x28878.791.685.1model
poseur_hrformer_tiny_coco_256x192_3dec74.290.181.4model
poseur_hrformer_small_coco_256x192_3dec76.691.083.4model
poseur_hrformer_big_coco_256x19278.991.985.6model
poseur_hrformer_big_coco_384x28879.692.185.9model
poseur_vit_base_coco_256x19276.790.683.5model

COCO-WholeBody Benchmark (V0.5)

Compare Whole-body pose estimation results with other methods.

Methodbodyfootfacehandwhole
APARAPARAPARAPARAPAR
OpenPose [1]0.5630.6120.5320.6450.4820.6260.1980.3420.3380.449
HRNet [2]0.6590.7090.3140.4240.5230.5820.3000.3630.4320.520
HRNet-body [2]0.7580.809--------
ZoomNet [3]0.7430.8020.7980.8690.6230.7010.4010.4980.5410.658
ZoomNas [4]0.740-0.617-0.889-0.625-0.654-
RTMPose [5]0.730-0.734-0.898-0.587-0.669-
Poseur_ResNet500.6550.7320.6150.7420.8440.9000.5600.6730.5870.681
Poseur_HRNet_W320.6800.7530.6680.7800.8630.9120.6040.7060.6200.707
Poseur_HRNet_W480.6920.7660.6890.7990.8610.9110.6210.7210.6330.721

COCO-WholeBody Pretrain Models

NameAPAP.5AP.75download link
poseur_res50_coco_wholebody_256x19265.585.071.8model
poseur_hrnet_w32_coco_wholebody_256x19268.085.874.4model
poseur_hrnet_w48_coco_wholebody_256x19269.286.075.7model

Disclaimer:

Citations

Please consider citing our papers in your publications if the project helps your research. BibTeX reference is as follows.

@inproceedings{mao2022poseur,
  title={Poseur: Direct human pose regression with transformers},
  author={Mao, Weian and Ge, Yongtao and Shen, Chunhua and Tian, Zhi and Wang, Xinlong and Wang, Zhibin and Hengel, Anton van den},
  journal = {Proceedings of the European Conference on Computer Vision {(ECCV)}},
  month = {October},
  year={2022}
}

Reference

[1] Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B.: 2d human pose estimation: New benchmark and state of the art analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014)
[2] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. arXiv preprint arXiv:1902.09212 (2019)
[3] Sheng Jin, Lumin Xu, Jin Xu, Can Wang, Wentao Liu, Chen Qian, Wanli Ouyang, Ping Luo. Whole-Body Human Pose Estimation in the Wild. (ECCV) (2020)
[4] Lumin Xu, Sheng Jin, Wentao Liu, Chen Qian, Wanli Ouyang, Ping Luo, Xiaogang Wang: ZoomNAS: Searching for Whole-body Human Pose Estimation in the Wild In: IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) (2022)
[5] Tao Jiang, Peng Lu, Li Zhang, Ningsheng Ma, Rui Han, Chengqi Lyu, Yining Li, Kai Chen. RTMPose: Real-Time Multi-Person Pose Estimation based on MMPose. arXiv preprint arXiv:2303.07399 (2023)

License

For commercial use, please contact Chunhua Shen.