Home

Awesome

Consistency-guided Meta-Learning for Bootstrapping Semi-Supervised Medical Image Segmentation (MLB-Seg)

Pytorch implementation for MLB-Seg

Data

All data will be stored in a folder data

 MLB-Seg (our repo)
    ├── data├── LA├──train
            |     ├──meta_train
            |     ├──original_data
            |     └──split_info.mat
            |
            └── Prostate├──train
                        ├──meta_train
                        ├──original_data
                        └──split_info.mat
XX.npy
  ├──'img'
  ├──'label'
  └──'noisy_label'
XX.npy
  ├──'img'
  └──'label'
split_info.mat
  ├──'train'
  ├──'meta'
  └──'test'

Train

python train.py --dataset Prostate --train_root ./data/Prostate/train/  --meta_root ./data/Prostate/meta_train/ --vali_root ./data/Prostate/original_data/ --checkpoint ./checkpoint/pretrained_model.pth --datasplitpath ./data/Prostate/split_info.mat